单元正余弦定理练习题.doc
文本预览下载声明
正余弦定理练习题
一 选择题
1.已知△ABC中,,,,则等于 ( )
A B C D
2. △ABC中,,,,则最短边的边长等于 ( )
A B C D
3.长为5、7、8的三角形的最大角与最小角之和为 ( )
A 90° B 120° C 135° D 150°
4. △ABC中,,则△ABC一定是 ( )
A 直角三角形 B 钝角三角形 C 等腰三角形 D 等边三角形
5. △ABC中,,,则△ABC一定是 ( )
A 锐角三角形 B 钝角三角形 C 等腰三角形 D 等边三角形
6.△ABC中,∠A=60°, a=, b=4, 那么满足条件的△ABC ( )
A 有 一个解 B 有两个解 C 无解 D 不能确定
7. △ABC中,,,,则等于 ( )
A B C 或 D 或
8.△ABC中,若,,则等于 ( )
A 2 B C D
9. △ABC中,,的平分线把三角形面积分成两部分,则( )
A B C D
10.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为
A 锐角三角形 B 直角三角形 C 钝角三角形 D 由增加的长度决定
11 在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°,则塔高为(? ? )
A. 米 B. 米 C. 200米 D. 200米
12 海上有A、B两个小岛相距10海里,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°的视角,则B、C间的距离是 (??? ) A.10 海里?? B.5海里??? C. 5 海里???? D.5 海里,那么等于 。
14.在△ABC中,已知,,,则边长 。
15.在钝角△ABC中,已知,,则最大边的取值范围是 。
16.三角形的一边长为14,这条边所对的角为,另两边之比为8:5,则这个三角形的面积为 。
三、解答题:
17在△ABC中,已知边c=10, 又知,求边a、b 的长。
18在△ABC中,已知,,试判断△ABC的形状。
19在锐角三角形中,边a、b是方程x2-2x+2=0的两根,角A、B满足:
2sin(A+B)-=0,求角C的度数,边c的长度及△ABC的面积。
20在奥运会垒球比赛前,C国教练布置战术时,要求击球手以与连结本垒及游击手的直线成15°的方向把球击出,根据经验及测速仪的显示,通常情况下球速为游击手最大跑速的4倍,问按这样的布置,游击手能不能接着球?
显示全部