北京城市学院《概率论与数理统计》2021-2022学年第一学期期末试卷.doc
学校________________班级____________姓名____________考场____________准考证号
学校________________班级____________姓名____________考场____________准考证号
…………密…………封…………线…………内…………不…………要…………答…………题…………
第PAGE1页,共NUMPAGES3页
北京城市学院
《概率论与数理统计》2021-2022学年第一学期期末试卷
题号
一
二
三
四
总分
得分
一、单选题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、求由曲线,直线,和轴所围成的图形绕轴旋转一周所成的旋转体的体积为()
A.
B.
C.
D.
2、计算定积分的值是多少?()
A.B.C.D.
3、已知函数y=y(x)由方程xy+e^y=e确定,求dy/dx()
A.(y/(e^y-x));B.(x/(e^y-y));C.(e^y/(y-x));D.(e^y/(x-y))
4、若级数收敛,级数发散,则级数的敛散性如何?()
A.收敛B.发散C.可能收敛也可能发散D.无法确定
5、已知函数,求的麦克劳林展开式。()
A.B.C.D.
6、求由曲面z=x2+y2和z=2-x2-y2所围成的立体体积()
A.π;B.2π;C.3π/2;D.4π/3
7、对于函数,求其定义域是多少?()
A.B.C.D.
8、计算定积分∫?1(2x+1)dx的值为()
A.2B.3C.4D.5
9、设曲线,求该曲线的拐点坐标是多少?()
A.(1,3)B.(2,1)C.(3,2)D.(0,1)
10、已知曲线C:y=x3-3x,求曲线C在点(1,-2)处的切线方程。()
A.y=2x-4B.y=-2xC.y=-x-1D.y=x-3
二、填空题(本大题共5小题,每小题4分,共20分.)
1、若函数,求该函数在点处的切线方程,已知导数公式,结果为_________。
2、有一数列,已知,,求的值为____。
3、求由曲线与直线所围成的图形的面积,结果为_________。
4、已知向量,向量,则向量与向量的夹角为______________。
5、设函数,求该函数的导数,根据求导公式,结果为_________。
三、解答题(本大题共2个小题,共20分)
1、(本题10分)已知向量,,求向量与向量的夹角余弦值。
2、(本题10分)求函数在区间上的最大值和最小值。
四、证明题(本大题共2个小题,共20分)
1、(本题10分)设函数在[0,1]上连续,在内可导,且,。证明:存在,使得。
2、(本题10分)设函数在[a,b]上连续,且不恒为常数。证明:存在,使得对于任意给定的正数(小于在[a,b]上的最大值与最小值之差),有,其中为某个充分小的正数。