文档详情

2019届高考数学大一轮复习 第八章 立体几何与空间向量 8.6 空间向量及其运算学案 理 北师大版.doc

发布:2018-05-16约7.88千字共19页下载文档
文本预览下载声明
§8.6 空间向量及其运算 最新考纲 考情考向分析 1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示. 2.掌握空间向量的线性运算及其坐标表示. 3.掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线和垂直. 本节是空间向量的基础内容,涉及空间直角坐标系、空间向量的有关概念、定理、公式及四种运算等内容.一般不单独命题,常以简单几何体为载体;以解答题的形式出现,考查平行、垂直关系的判断和证明及空间角的计算,解题要求有较强的运算能力. 1.空间向量的有关概念 名称 概念 表示 零向量 模为0的向量 0 单位向量 长度(模)为1的向量 相等向量 方向相同且模相等的向量 a=b 相反向量 方向相反且模相等的向量 a的相反向量为-a 共线向量 表示空间向量的有向线段所在的直线互相平行或重合的向量 a∥b 共面向量 平行于同一个平面的向量 2.空间向量中的有关定理 (1)共线向量定理 空间两个向量a与b(b≠0)共线的充要条件是存在实数λ,使得a=λb. (2)共面向量定理 共面向量定理的向量表达式:p=xa+yb,其中x,y∈R,a,b为不共线向量. (3)空间向量基本定理 如果三个向量a,b,c不共面,那么对空间任一向量p,存在有序实数组{x,y,z},使得p=xa+yb+zc,{a,b,c}叫作空间的一个基底. 3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角 已知两个非零向量a,b,在空间任取一点O,作=a,=b,则∠AOB叫作向量a,b的夹角,记作〈a,b〉,其范围是0≤〈a,b〉≤π,若〈a,b〉=,则称a与b互相垂直,记作a⊥b. ②两向量的数量积 已知空间两个非零向量a,b,则|a||b|cos〈a,b〉叫作向量a,b的数量积,记作a·b,即a·b=|a||b|cos〈a,b〉. (2)空间向量数量积的运算律 ①(λa)·b=λ(a·b); ②交换律:a·b=b·a; ③分配律:a·(b+c)=a·b+a·c. 4.空间向量的坐标表示及其应用 设a=(a1,a2,a3),b=(b1,b2,b3). 向量表示 坐标表示 数量积 a·b a1b1+a2b2+a3b3 共线 a=λb(b≠0,λ∈R) a1=λb1,a2=λb2,a3=λb3 垂直 a·b=0(a≠0,b≠0) a1b1+a2b2+a3b3=0 模 |a| 夹角 〈a,b〉(a≠0,b≠0) cos〈a,b〉= 知识拓展 1.向量三点共线定理 在平面中A,B,C三点共线的充要条件是:=x+y(其中x+y=1),O为平面内任意一点. 2.向量四点共面定理 在空间中P,A,B,C四点共面的充要条件是:=x+y+z(其中x+y+z=1),O为空间中任意一点. 题组一 思考辨析 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)空间中任意两个非零向量a,b共面.( √ ) (2)在向量的数量积运算中(a·b)·c=a·(b·c).( × ) (3)对于非零向量b,由a·b=b·c,则a=c.( × ) (4)两向量夹角的范围与两异面直线所成角的范围相同.( × ) (5)若A,B,C,D是空间任意四点,则有+++=0.( √ ) (6)若a·b0,则〈a,b〉是钝角.( × ) 题组二 教材改编 2.如图所示,在平行六面体ABCD—A1B1C1D1中,M为A1C1与B1D1的交点.若=a,=b,=c,则下列向量中与相等的向量是(  ) A.-a+b+c B.a+b+c C.-a-b+c D.a-b+c 答案 A 解析 =+=+(-) =c+(b-a)=-a+b+c. 3.正四面体ABCD的棱长为2,E,F分别为BC,AD的中点,则EF的长为________. 答案  解析 ||2=2=(++)2 =2+2+2+2(·+·+·) =12+22+12+2(1×2×cos 120°+0+2×1×cos 120°) =2, ∴||=,∴EF的长为. 题组三 易错自纠 4.在空间直角坐标系中,已知A(1,2,3),B(-2,-1,6),C(3,2,1),D(4,3,0),则直线AB与CD的位置关系是(  ) A.垂直 B.平行 C.异面 D.相交但不垂直 答案 B 解析 由题意得,=(-3,-3,3),=(1,1,-1), ∴=-3,∴与共线,又AB与CD没有公共点,∴AB∥CD. 5.与向量(-3,-4,5)共线的单位向量是__________________________________. 答案 和 解析 因为与向量a共线的单位向量是±,又因为向量(-3,-4,5)的模为=5, 所以与向量(-3,-4,5)共线的单位向量是 ±(-3,-
显示全部
相似文档