2019届高考数学大一轮复习 第八章 立体几何与空间向量 8.5 垂直关系学案 理 北师大版.doc
文本预览下载声明
§8.5 垂直关系
最新考纲 考情考向分析 1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理.
2.能运用公理、定理和已获得的结论证明一些空间图形的垂直关系的简单命题. 直线、平面垂直的判定及其性质是高考中的重点考查内容,涉及线线垂直、线面垂直、面面垂直的判定及其应用等内容.题型主要以解答题的形式出现,解题要求有较强的推理论证能力,广泛应用转化与化归的思想.
1.直线与平面垂直
图形 条件 结论 判定 a⊥b,b(α(b为α内的任意一条直线) a⊥α a⊥m,a⊥n,m,n(α,m∩n=O a⊥α a∥b,a⊥α b⊥α 性质 a⊥α,b(α a⊥b a⊥α,b⊥α a∥b
2.平面与平面垂直
(1)平面与平面垂直的定义
两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.
(2)判定定理与性质定理
文字语言 图形语言 符号语言 判定定理 如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直 α⊥β 性质定理 如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面 l⊥α
知识拓展
重要结论
(1)若两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.
(2)若一条直线垂直于一个平面,则它垂直于这个平面内的任何一条直线(证明线线垂直的一个重要方法).
(3)垂直于同一条直线的两个平面平行.
(4)一条直线垂直于两平行平面中的一个,则这条直线与另一个平面也垂直.
题组一 思考辨析
1.判断下列结论是否正确(请在括号中打“√”或“×”)
(1)直线l与平面α内的无数条直线都垂直,则l⊥α.( × )
(2)垂直于同一个平面的两平面平行.( × )
(3)直线a⊥α,b⊥α,则a∥b.( √ )
(4)若α⊥β,a⊥β,则a∥α.( × )
(5)若直线a⊥平面α,直线b∥α,则直线a与b垂直.( √ )
(6)若平面α内的一条直线垂直于平面β内的无数条直线,则α⊥β.( × )
题组二 教材改编
2.下列命题中错误的是( )
A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β
B.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β
C.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γ
D.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β
答案 D
解析 对于D,若平面α⊥平面β,则平面α内的直线可能不垂直于平面β,即与平面β的关系还可以是斜交、平行或在平面β内,其他选项均是正确的.
3.在三棱锥P-ABC中,点P在平面ABC中的射影为点O.
(1)若PA=PB=PC,则点O是△ABC的________心;
(2)若PA⊥PB,PB⊥PC,PC⊥PA,则点O是△ABC的________心.
答案 (1)外 (2)垂
解析 (1)如图1,连接OA,OB,OC,OP,
在Rt△POA,Rt△POB和Rt△POC中,PA=PC=PB,
所以OA=OB=OC,即O为△ABC的外心.
(2)如图2,延长AO,BO,CO分别交BC,AC,AB于H,D,G.
∵PC⊥PA,PB⊥PC,PA∩PB=P,
∴PC⊥平面PAB,
又AB(平面PAB,∴PC⊥AB,
∵AB⊥PO,PO∩PC=P,
∴AB⊥平面PGC,又CG(平面PGC,
∴AB⊥CG,即CG为△ABC边AB上的高.
同理可证BD,AH分别为△ABC边AC,BC上的高,
即O为△ABC的垂心.
题组三 易错自纠
4.(2017·湖南六校联考)已知m和n是两条不同的直线,α和β是两个不重合的平面,下列给出的条件中一定能推出m⊥β的是( )
A.α⊥β且m(α B.α⊥β且m∥α
C.m∥n且n⊥β D.m⊥n且α∥β
答案 C
解析 由线面垂直的判定定理,可知C正确.
5.如图所示,在正方体ABCD—A1B1C1D1中,点O,M,N分别是线段BD,DD1,D1C1的中点,则直线OM与AC,MN的位置关系是( )
A.与AC,MN均垂直
B.与AC垂直,与MN不垂直
C.与AC不垂直,与MN垂直
D.与AC,MN均不垂直
答案 A
解析 因为DD1⊥平面ABCD,所以AC⊥DD1,
又因为AC⊥BD,DD1∩BD=D,
所以AC⊥平面BDD1B1,
因为OM(平面BDD1B1,所以OM⊥AC.
设正方体的棱长为2,
则OM==,MN==,
ON==,
所以OM2+MN2=ON2,所以OM⊥MN.故选A.
6.如图所示,AB是半圆O的直径,VA垂直于半圆O所在的平面,点C是圆周上不同于A,B的任意一点,M,N分别为VA,VC的中点,则下列结论正确的是( )
A.MN∥AB
B.平面VAC⊥平面VB
显示全部