文档详情

2025年人教版七年级下册数学第七章相交线与平行线第11课时平移.pptx

发布:2025-03-08约1.69千字共20页下载文档
文本预览下载声明

第七章相交线与平行线;03;1.(2022新课标)通过具体实例认识平移,探索它的基本性质:一个图形和它经过平移所得的图形中,两组对应点的连线平行(或在同一条直线上)且相等.

2.(2022新课标)认识并欣赏平移在自然界和现实生活中的应用.

3.(2022新课标)运用图形的平移进行图案设计.;(1)平移的定义:一般地,在平面内,将一个图形按某一方向

一定的距离,这样的图形运动叫作平移.?

(2)平移的方向:图形平移的方向不限于水平或竖直方向,图形可以沿平面内任何方向平移.

(3)示例:

①平移的方向:如图,平移的方向为射线AA的方向;

②平移的距离:如图,平移的距离为平移前后对应点的连线的长度,即线段AA的长度.;1.(2024东莞一模)把如图所示的海豚吉祥物进行平移,能得到的图形是()

;(1)新图形与原图形的形状和大小完全 .

延伸:

①平移前后对应的线段(或在同一直线上)且;?

②平移前后对应的角.?

;(2)新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段(或在同一直线上)且.?;2.(人教7下P27,教材新增、北师8下P66)如图,四边形ABCD平移后得到四边形EFGH.

(1)CD=;(2)HE=;?

(3)∠F=;(4)∠D=;?

(5)DA∥;(6)AB∥;?

(7)DH===,这四条线段的位置关系是

.?;平面内平移作图的关键步骤如下:

(1)找:找出平移的方向和距离;

(2)定:对照具体图形,确定关键点;

(3)移:按照既定方向和距离平移图形中的关键点;

(4)连:按原图形顺序连接对应关键点.;3.(人教7下P27、北师8下P66)如图,平移三角形ABC,使点A移动到A,画出平移后的三角形ABC,并写出平移的方向和平移的距离.

;4.【例1】在下列图案中,不能用平移得到的图案是()

;9.下面四个花窗图案中,运用了“平移”制作的是()

;5.【例2】如图,在方格纸中,有一个△ABC.

(1)画出先将△ABC向右平移6格,??向上平移3格后的△DEF(A,B,C的对应点依次为D,E,F);

(2)连接AD,BE,则AD与BE的位置关系是;?

(3)AD与BE的大小关系是.?

;10.如图,在方格纸中,每个小正方形的边长均为1个单位长度.有一个△ABC,它的三个顶点均与小正方形的格点重合.

(1)将△ABC向右平移3个单位长度,再向下平移1个单位长度得到△A1B1C1,请在方格纸中画出△A1B1C1;

(2)△A1B1C1的面积为.?;6.【例3】(人教7下P29,教材新增)如图,经过平移,四边形ABCD的顶点A移到点A,画出平移后的四边形ABCD.

;11.(人教7下P29,教材新增)如图,将四边形ABCD沿箭头方向平移1cm,画出平移后的四边形ABCD.

;7.【例4】如图,将△ABC沿直线AB向右平移后到达△BDE的位置,若∠CAB=50°,∠ABC=100°,则∠CBE的度数为()

A.50° B.100°

C.45° D.30°;12.(人教7下P29改编,教材新增)(2024广州二模)如图,将△ABC沿BC方向平移到△DEF,若A,D之间的距离为2,CE=3,则BF等于()

A.6

B.7

C.8

D.9;8.【例5】(2024东营)如图,将△DEF沿FE方向平移3cm得到△ABC,若△DEF的周长为24cm,则四边形ABFD的周长为cm.;★13.(运算能力)(2024甘肃三模)如图,在Rt△ABC中,BC=7,把△ABC沿射线AB方向平移4个单位长度至△EFG处,EG与BC交于点M.若CM=3,则图中阴影部分的面积为

.?

显示全部
相似文档