微积分作业与答案作业29.pdf
1、按定义判断下列级数的敛散性,若收敛,求其和
∞1
1)∑
n1(5n−4)(5n+1)
1111111111
解:s=++L+=−+−+L+−
n
1661154515166115451
××n−n+n−n+
()()
11
1=−
55n+1
111
limslim1=−
n
n→∞n→∞55n+15
∞1∞11
级数∑收敛,∑
n1(5n−4)(5n+1)n1(5n−4)(5n+1)5
∞1
2)∑
n++n
n11
1n+1−n∞
解:因为n+1+n1,原级数化为∑(n+1−n)
n1
s2=−1+3−2+L+n+1−nn=+1−1
n
limsnlim(n=+1−1)=∞
n→∞n→∞
∞1
级数∑发散。
n1n
n1++
∞
3)∑(n+2−2n+1+n)
n1
解:n+−n++nn=+−n+−n+−n
221(21)(1)
s3=−2−2−1+4−3−3−2+L+n+2−n+1−n+1−n
n()()()()()()
1
n=+2−n+1−2−11=−2+
()n+2+n+1