第四章椭数学变换(1-6节).ppt
文本预览下载声明
Fundation of Geodesy 第四章 地球椭球数学投影变换的基本理论 4.1地球椭球基本参数及其互相关系 4.2 椭球面上常用坐标系及其关系 4.3 椭球面上的几种曲率半径 4.4 椭球面上的弧长计算 4.5 大地线 4.6 将地面观测值归算至椭球面 4.7 大地测量主题解算概述 4.8 地图数学投影变换的基本概念 4.9 高斯平面直角坐标系 4.10 横轴墨卡托投影和高斯投影簇的概念 4.11 兰勃脱投影概述 第四章 地球椭球数学投影变换的基本理论 4.1地球椭球基本参数及其互相关系 地球椭球是选择的旋转椭球,旋转椭球的形状和大小常用子午椭圆的五个基本几何参数(或称元素): 长半轴a 短半轴b 椭圆的扁率 椭圆的第一偏心率 椭圆的第二偏心率 通常用a ,α 为简化书写,还常引入以下符号 4.2 椭球面上常用坐标系及其关系 4.2.1 各种坐标系的建立 1、大地坐标系 大地经度B 大地纬度L 大地高H 2、空间直角坐标系 定义: 1、坐标原点位于总地 球椭球(或参考椭球)质心; 2、Z轴与地球平均自转轴相重合, 亦即指向某一时刻的平均北极点; 3、X轴指向平均自转轴与平均格 林尼治天文台所决定的子午面与赤道面的交点G; 4、Y轴与此平面垂直,且指向东为正。 地心空间直角系与参心空间直角坐标系之分。 3、子午面直角坐标系 设P点的大地经度为L,在过P点的子午面上,以子午圈椭圆中心为原点,建立x, y平面直角坐标系。在该坐标系中,P点的位置用L, x, y表示。 4、地心纬度坐标系及归化纬度坐标系 设椭球面上P点的大地经度L,在此子午面上以椭圆中心O为原点建立地心纬度坐标系; 以椭球长半径a为半径作辅助圆,延长P2P与辅助圆相交P1点,则OP1与x轴夹角称为P点的归化纬度u。 5、大地极坐标系 M是椭球面上一点,MN是过M的子午线,S为连接MP的大地线长,A为大地线在M点的方位角。 以M为极点; MN为极轴; P点极坐标为(S, A) 4.2.2 坐标系之间的相互关系 子午平面坐标系同大地坐标系的关系 令: pn=N 空间直角坐标同子午面直角坐标系的关系 空间直角坐标系同大地坐标系 在椭球面上的点: 不在椭球面上的点: 由空间直角坐标计算相应大地坐标 或 B、u、 φ之间的关系 B和u之间的关系 U、φ之间的关系 B、φ之间的关系 大地纬度、地心纬度、归化纬度之间的差异很小,经过计算,当B=45°时 4.3 椭球面上的几种曲率半径 过椭球面上任意一点可作一条垂直于椭球面的法线,包含这条法线的平面叫作 法截面,法截面与椭球面的交线叫法截线。 子午圈曲率半径 卯酉圈曲率半径(N) 卯酉圈:过椭球面上一点的法线,可作无限个法截面,其中一个与该点子午面相垂直的法截面同椭球面相截形成的闭合的圈称为卯酉圈。 麦尼尔定理: 假设通过曲面上一点引两条截弧,一为法截弧,一为斜截弧,且在该点上这两条截弧具有公共切线,这时斜截弧在该点处的曲率半径等于法截弧的曲率半径乘以两截弧平面夹角的余弦。 卯酉圈曲率半径的特点: 卯酉圈曲率半径恰好等于法线介于椭球面和短轴之间的长度,亦即卯酉圈的曲率中心位在椭球的旋转轴上。 主曲率半径的计算 以上讨论的子午圈曲率半径M及卯酉圈曲率半径N,是两个互相垂直的法截弧的曲率半径,这在微分几何中统称为主曲率半径。 任意法截弧的曲率半径 任意法截弧的曲率半径的变化规律: RA不仅与点的纬度B有关,而且还与过该点的法截弧的方位角A有关。 当A=0°时,变为计算子午圈曲率半径的,即R0=M; 当RA=90°时,为卯酉圈曲率半径,即R90=N。主曲率半径M及N分别是RA的极小值和极大值。 当A由0°→90°时,RA之值由M→N,当A由 90°→180°时,RA值由N→M,可见RA值的变化是以 90°为周期且与子午圈和卯酉圈对称的。 平均曲率半径 椭球面上任意一点的平均曲率半径 R 等于该点子午圈曲率半径M和卯酉圈曲率半径N的几何平均值。 M,N,R的关系 对于克拉索夫斯基椭球 4.4 椭球面上的弧长计算 子午线弧长计算
显示全部