文档详情

第四章椭球数学变换.ppt

发布:2020-02-22约2.74千字共58页下载文档
文本预览下载声明
Fundation of Geodesy 4.4 椭球面上的弧长计算 子午线弧长计算公式 如果以B=90°代入,则得子午椭圆在一个象限内的弧长约为10 002 137m。旋转椭球的子午圈的整个弧长约为40 008 549.995m。即一象限子午线弧长约为10 000km,地球周长约为40 000km。 为求子午线上两个纬度B1及B2间的弧长,只需按(11.42)式分别算出相应的X1及X2,而后取差:ΔX=X2-X1,该ΔX即为所求的弧长。 当弧长甚短(例如X≤40km,计算精度到0.001m),可视子午弧为圆弧,而圆的半径为该圆弧上平均纬度点的子午圈的曲率半径Mm  由子午弧长求大地纬度 迭代解法: 平行圈弧长公式 子午线弧长和平行圈弧长变化的比较 4.5 大地线 两点间的最短距离,在平面上是两点间的直线,在球面上是两点间的大圆弧,那么在椭球面上又是怎样的一条线呢? 它应是大地线。 相对法截线 相对法截线 相对法截线的特点: 当A,B两点位于同一子午圈或同一平行圈上时,正反法截线则合二为一。 在通常情况下,正反法截线是不重合的。因此在椭球面上A,B,C三个点处所测得的角度(各点上正法截线之夹角)将不能构成闭合三角形。为了克服这个矛盾,在两点间另选一条单一的大地线代替相对法截线,从而得到由大地线构成的单一的三角形。 大地线的定义和性质 椭球面上两点间的最短 程曲线叫做大地线。 大地线的性质: 大地线是两点间惟一最短线,而且位于相对法截线之间,并靠近正法截线,它与正法截线间的夹角 在椭球面上进行测量计算时,应当以两点间的大地线为依据。在地面上测得的方向、距离等,应当归算成相应大地线的方向、距离。 长度差异可忽略,方向差异需改化。 * 第四章 地球椭球数学投影变换的基本理论 4.1地球椭球基本参数及其互相关系 4.2 椭球面上常用坐标系及其关系 4.3 椭球面上的几种曲率半径 4.4 椭球面上的弧长计算 4.5 大地线 4.6 将地面观测值归算至椭球面 4.7 大地测量主题解算概述 4.8 地图数学投影变换的基本概念 4.9 高斯平面直角坐标系 4.10 横轴墨卡托投影和高斯投影簇的概念 4.11 兰勃脱投影概述 第四章 地球椭球数学投影变换的基本理论 4.1地球椭球基本参数及其互相关系 地球椭球是选择的旋转椭球,旋转椭球的形状和大小常用子午椭圆的五个基本几何参数(或称元素): 长半轴a 短半轴b 椭圆的扁率 椭圆的第一偏心率 椭圆的第二偏心率 通常用a ,α 为简化书写,还常引入以下符号 4.2 椭球面上常用坐标系及其关系 4.2.1 各种坐标系的建立 1、大地坐标系 大地经度B 大地纬度L 大地高H 2、空间直角坐标系 定义: 1、坐标原点位于总地 球椭球(或参考椭球)质心; 2、Z轴与地球平均自转轴相重合, 亦即指向某一时刻的平均北极点; 3、X轴指向平均自转轴与平均格 林尼治天文台所决定的子午面与赤道面的交点G; 4、Y轴与此平面垂直,且指向东为正。 地心空间直角系与参心空间直角坐标系之分。 3、子午面直角坐标系 设P点的大地经度为L,在过P点的子午面上,以子午圈椭圆中心为原点,建立x, y平面直角坐标系。在该坐标系中,P点的位置用L, x, y表示。 4、地心纬度坐标系及归化纬度坐标系 设椭球面上P点的大地经度L,在此子午面上以椭圆中心O为原点建立地心纬度坐标系; 以椭球长半径a为半径作辅助圆,延长P2P与辅助圆相交P1点,则OP1与x轴夹角称为P点的归化纬度u。 5、大地极坐标系 M是椭球面上一点,MN是过M的子午线,S为连接MP的大地线长,A为大地线在M点的方位角。 以M为极点; MN为极轴; P点极坐标为(S, A) 4.2.2 坐标系之间的相互关系 子午平面坐标系同大地坐标系的关系 令: pn=N 空间直角坐标同子午面直角坐标系的关系 空间直角坐标系同大地坐标系 在椭球面上的点: 不在椭球面上的点: 由空间直角坐标计算相应大地坐标 或 B、u、 φ之间的关系 B和u之间的关系 U、φ之间的关系 B、φ之间的关系 大地纬度、地心纬度、归化纬度之间的差异很小,经过计算,当B=45°时 4.3 椭球面上的几种曲率半径
显示全部
相似文档