新高考数学一轮复习考点探究与题型突破训练第39讲 空间几何体及其表面积、体积(原卷版).doc
第39讲空间几何体及其表面积、体积
1.空间几何体的结构特征
(1)多面体的结构特征
名称
棱柱
棱锥
棱台
图形
底面
互相平行且全等
多边形
互相平行且相似
侧棱
平行且相等
相交于一点,但不一定相等
延长线交于一点
侧面形状
平行四边形
三角形
梯形
(2)旋转体的结构特征
名称
圆柱
圆锥
圆台
球
图形
母线
互相平行且相等,垂直于底面
相交于一点
延长线交于一点
轴截面
矩形
等腰三角形
等腰梯形
圆面
侧面展开图
矩形
扇形
扇环
2.直观图
(1)画法:常用斜二测画法.
(2)规则:①原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴、y′轴所在平面垂直.
②原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.
3.圆柱、圆锥、圆台的侧面展开图及侧面积公式
圆柱
圆锥
圆台
侧面展开
图
侧面积公
式
S圆柱侧=2πrl
S圆锥侧=πrl
S圆台侧=π(r1+r2)l
4.柱、锥、台、球的表面积和体积
名称
几何体
表面积
体积
柱体(棱柱和圆柱)
S表面积=S侧+2S底
V=Sh
锥体(棱锥和圆锥)
S表面积=S侧+S底
V=eq\f(1,3)Sh
台体(棱台和圆台)
S表面积=S侧+S上+S下
V=eq\f(1,3)(S上+S下+eq\r(S上S下))h
球
S=4πR2
V=eq\f(4,3)πR3
考点1基本立体图形
[名师点睛]
空间几何体结构特征的判断技巧
(1)紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本元素,然后再依据题意判定.
(2)通过反例对结构特征进行辨析,即要说明一个命题是错误的,只要举出一个反例即可.
直观图
(1)在斜二测画法中,要确定关键点及关键线段.“平行于x轴的线段平行性不变,长度不变;平行于y轴的线段平行性不变,长度减半.”
(2)按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积的关系:S直观图=eq\f(\r(2),4)S原图形.
[典例]
1.(多选)(2022·潍坊调研)下面关于空间几何体的叙述正确的是()
A.底面是正多边形的棱锥是正棱锥
B.用平面截圆柱得到的截面只能是圆和矩形
C.长方体是直平行六面体
D.存在每个面都是直角三角形的四面体
2.一个平面四边形的斜二测画法的直观图是一个边长为a的正方形,则原平面四边形的面积等于()
A.eq\f(\r(2),4)a2 B.2eq\r(2)a2 C.eq\f(\r(2),2)a2 D.eq\f(2\r(2),3)a2
3.(2021·新高考Ⅰ卷)已知圆锥的底面半径为eq\r(2),其侧面展开图为一个半圆,则该圆锥的母线长为()
A.2 B.2eq\r(2)
C.4 D.4eq\r(2)
[举一反三]
1.下列说法正确的是()
A.有一个面是多边形,其余各面都是三角形,由这些面围成的多面体是棱锥
B.有两个面平行且相似,其余各面都是梯形的多面体是棱台
C.如果一个棱锥的各个侧面都是等边三角形,那么这个棱锥可能为六棱锥
D.如果一个棱柱的所有面都是长方形,那么这个棱柱是长方体
2.(2022·浙江·镇海中学模拟预测)如图,梯形是水平放置的一个平面图形的直观图,其中,,,则原图形的面积为(???????)
A. B. C. D.
3.如图,一立在水平地面上的圆锥形物体的母线长为4m,一只小虫从圆锥的底面圆上的点P出发,绕圆锥表面爬行一周后回到点P处.若该小虫爬行的最短路程为4eq\r(3)m,则圆锥底面圆的半径等于______m.
考点2表面积与体积
[名师点睛]
1.空间几何体表面积的求法
(1)旋转体的表面积问题注意其轴截面及侧面展开图的应用,并弄清底面半径、母线长与对应侧面展开图中边的关系.
(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.
2.求空间几何体的体积的常用方法
(1)公式法:规则几何体的体积问题,直接利用公式进行求解;
(2)割补法:把不规则的几何体分割成规则的几何体,或者把不规则的几何体补成规则的几何体;
(3)等体积法:通过选择合适的底面来求几何体体积的一种方法,特别是三棱锥的体积.
[典例]
1.(多选)已知正四棱锥的侧面与底面所成的锐二面角为θ,若θ=30°,侧棱长为eq\r(21),则()
A.正四棱锥的底面边长为6
B.正四棱锥的底面边长为3
C.正四棱锥的侧面积为24eq\r(3)
D.正四棱锥的侧面积为12eq\r(3)