人教版高中数学选修2-3《二项式定理》说课课件.ppt
文本预览下载声明
(1)由于二项式定理与概率理论中的三大概率分布之一-----二项分布有内在联系,本小节是学习后面的概率知识以及进一步学习概率统计的准备知识. (2)由于二项式系数都是一些特殊的组合数,利用二项式定理可得到关于组合数的一些恒等式,从而深化对组合数的认识. (3)基于二项式展开式与多项式乘法的联系,本小节的学习可对初中学习的多项式的变形起到复习、深化的作用. (4)二项式定理是解决某些整除性、近似计算问题的一种方法. 变传统的“接受性、训练性学习”为新颖的“探究式、发现式的学习”,变教师是传授者为组织者、合作者、指导者,在学习过程中,教师想尽办法激发学生探究式、发现式学习的兴趣,并使其作为一种教学方式应用于概念、定理、公式和解题教学中,让学生在探究、发现中获取知识,发展能力.从而增强学生的主体意识,提高学生学习的效果. (二)问题初探 请同学们运用多项式的乘法法则写出(a+b)2、(a+b)3、(a+b)4的展开式: (a+b)2= ; (a+b)3= ; (a+b)4= ; 用这种方法写出(a+b)10的展开式容易吗? (a+b)100、(a+b)n呢?对于这个问题,我们如何解决? (三)理性探究 通过对(a+b)2、(a+b)3、(a+b)4的展开式的观察,进行下列四个方面的探究: ①项数; ②各项次数; ③字母a、b指数的变化规律; ④各项系数 (五)尝试应用 1、回到引例:今天是星期六,你能很快知道再过810天的那一天是星期几吗? (六)课堂练习 1、课本P31:1、2、3、4 2、求 的展开式的第3项。 五、评价分析 准备这节课,我主要考虑下面几个问题: (1)这节课的教学目的“使学生掌握二项式定理”重要,还是“使学生掌握二项式定理的形成过程”重要?我反复斟酌,听取了备课组老师们的意见,认为后者重要。于是,我这节课花了大部分时间是来引导学生探究。 (2)学生怎样才能掌握二项式定理?是通过大量的练习来达到目的,还是通过学生对二项式定理的形成过程来记忆?正如前面所说“学问之道,问而得,不如求而得之深固也”。我还是要求学生自主的去探索二项式定理。这样也符合以教师为主导、学生为主体、师生互动的新课程教学理念。 (3)准备什么样的例题?例题的目的是为了巩固本节课所学,通过例题加深学生对二项式定理的理解和对通项公式的掌握,区分系数和二项式系数。 * * 二项式定理说课 (第一课时) 一、教材分析 二项式定理一节,分四个课时.这里讲的是第一课时,重点是公式的推导,其次是二项式定理及二项展开式通项公式的简单应用,至于二项式定理及二项展开式的通项公式的灵活运用和二项式系数的性质留在第二、三、四课时. 二项式定理是初中学习的多项式乘法的继续,它所研究的是一种特殊的多项式——二项式的乘法的展开式,这一小节与不少内容都有着密切联系,特别是它在本章学习中起着承上启下的作用.学习本小节的意义主要在于: 二、目的分析 结合重点中学学生的实际情况,确定本节课的教学目标如下: 1、掌握二项式定理及二项展开式的通项公式,并能熟练地进行二项式的展开及求解某些指定的项. 2、通过探索二项式定理,培养学生观察问题发现问题,归纳推理问题的能力. 3、激发学生学习兴趣、培养学生不断发现,探索新知的精神,渗透事物相互转化和理论联系实际的辩证唯物主义观点,并通过数学的对称美,培养学生的审美意识. 重点:二项定理的推导及运用 难点:二项式定理及通项公式的运用 三、教法分析 新的数学课程标准提出:掌握数学知识只是结果,而掌握知识的活动过程才是途径,通过这个途径,来挖掘人的发展潜能才是目的,结果应让位于过程.没有途径,学生无法达到目的,因此,在教学中,必须贯彻好过程性原则,既要重视学生的参与过程,又要重视知识的重现过程.也就是说,在教学过程中,充分揭示每一个阶段的思维活动过程,通过思维活动过程的暴露和数学创新活动过程的演变,使教学活动成为思维活动的教学,由此来启发、引导学生直接或间接地感受和体验知识的产生、发展和演变过程. 四、过程分析 (一)创设情境,激发兴趣 提出问题:“今天是星期六,你能很快知道再过810天的那一天是星期几吗?” 设计意图:根据教学内容特点和学生的认识规律,给学生提出一些能引起思考和争论性的题目,即一些内容丰富、背景值得进一步探究的诙谐有趣的题目、给学生创造一个“愤”和“悱”的情境,利用问题设下认知障碍,激发学生的求知欲望
显示全部