文档详情

《量子力学_第四版_卷一_(曾谨言_着)习题答案.》.doc

发布:2015-12-16约2.84千字共8页下载文档
文本预览下载声明
量子力学的诞生 1.1设质量为的粒子在谐振子势中运动,用量子化条件求粒子能量E的可能取值。 提示:利用 解:能量为E的粒子在谐振子势中的活动范围为 (1) 其中由下式决定:。 0 由此得 , (2) 即为粒子运动的转折点。有量子化条件 得 (3) 代入(2),解出 (4) 积分公式: 1.2设粒子限制在长、宽、高分别为的箱内运动,试用量子化条件求粒子能量的可能取值。 解:除了与箱壁碰撞外,粒子在箱内作自由运动。假设粒子与箱壁碰撞不引起内部激发,则碰撞为弹性碰撞。动量大小不改变,仅方向反向。选箱的长、宽、高三个方向为轴方向,把粒子沿轴三个方向的运动分开处理。利用量子化条件,对于x方向,有 即 (:一来一回为一个周期) , 同理可得, , , 粒子能量 1.3设一个平面转子的转动惯量为I,求能量的可能取值。 提示:利用 是平面转子的角动量。转子的能量。 解:平面转子的转角(角位移)记为。 它的角动量(广义动量),是运动惯量。按量子化条件 , 因而平面转子的能量 , 1.4有一带电荷质量的粒子在平面内运动,垂直于平面方向磁场是B,求粒子能量允许值. (解)带电粒子在匀强磁场中作匀速圆周运动,设圆半径是,线速度是,用高斯制单位,洛伦兹与向心力平衡条件是: (1) 又利用量子化条件,令电荷角动量 转角 (2) 即 (3) 由(1)(2)求得电荷动能= 再求运动电荷在磁场中的磁势能,按电磁学通电导体在磁场中的势能=,是电荷的旋转频率, ,代入前式得 运动电荷的磁势能= (符号是正的) 点电荷的总能量=动能+磁势能=E= ( ) 1.5,1.6未找到答案 1.7(1)试用Fermat最小光程原理导出光的折射定律 (2)光的波动论的拥护者曾向光的微粒论者提出下述非难: 如认为光是粒子,则其运动遵守最小作用量原理 认为则这将导得下述折射定律 这明显违反实验事实,即使考虑相对论效应,则对自由粒子:仍就成立,E是粒子能量,从一种媒质到另一种媒质E仍不变,仍有,你怎样解决矛盾? (解)甲法:光线在同一均匀媒质中依直线传播,因此自定点A到定点B的路径是两段直线:光程 设A,B到界面距离是a,b(都是常量)有 又AB沿界面的投影c也是常数,因而,存在约束条件: (2) 求(1)的变分,而将,看作能独立变化的,有以下极值条件 (3) 再求(2)的变分 (3)与(4)消去和得 (5) [乙法]见同一图,取为变分参数,取0为原点,则有: 求此式变分,令之为零,有: 这个式子从图中几何关系得知,就是(5). (2)按前述论点光若看作微粒则粒子速度应等于光波的群速度光程原理作,依前题相速,而,是折射率,是波前阵面更引起的,而波阵面速度则是相速度,这样最小作用量原理仍可以化成最小光程原理. 前一非难是将光子的传播速度看作相速度的误解. 1.8对高速运动的粒子(静质量)的能量和动量由下式给出: (1) (2) 试根据哈密顿量 (3) 及正则方程式来检验以上二式.由此得出粒子速度和德布罗意的群速度相等的关系.计算速度并证明它大于光速. (解)根据(3)式来组成哈氏正则方程式组:,本题中,,因而 (4) 从前式解出(用表示)即得到(2).又若将(2)代入(3),就可得到(1)式. 其次求粒子速度和它的物质波的群速度间的关系.运用德氏的假设: 于(3)式右方, 又用于(3)式左方,遍除: 按照波包理论,波包群速度是角频率丢波数的一阶导数: = 最后一式按照(4)式等于粒子速度,因而。 又按一般的波动理论,波的相速度是由下式规定 (是频率) 利用(5)式得知 (6) 故相速度(物质波的)应当超过光速。 最后找出和的关系,将(1)(2)相除,再运用德氏波假设: , (7) 补充: 1.1设质量为m的粒子在一维无限深势阱中运动, 试用de Broglie的驻波条件,求粒子能量的可能取值。 解:据驻波条件,有
显示全部
相似文档