文档详情

高等数学下试题及答案.doc

发布:2025-05-27约6.43千字共8页下载文档
文本预览下载声明

高等数学下试题及答案

一、单项选择题(每题2分,共20分)

1.函数\(z=\ln(x+y)\)的定义域是()

A.\(x+y\gt0\)B.\(x+y\geq0\)C.\(x\gt0,y\gt0\)D.\(x\geq0,y\geq0\)

2.设\(z=x^2y\),则\(\frac{\partialz}{\partialx}\)=()

A.\(2xy\)B.\(x^2\)C.\(2x\)D.\(y\)

3.已知\(\vec{a}=(1,-2,3)\),\(\vec{b}=(2,1,0)\),则\(\vec{a}\cdot\vec{b}\)=()

A.\(0\)B.\(-1\)C.\(1\)D.\(2\)

4.向量\(\vec{a}=(3,4)\)的模\(\vert\vec{a}\vert\)=()

A.\(5\)B.\(7\)C.\(\sqrt{7}\)D.\(\sqrt{13}\)

5.交换二次积分\(\int_{0}^{1}dx\int_{x}^{1}f(x,y)dy\)的积分次序后为()

A.\(\int_{0}^{1}dy\int_{y}^{1}f(x,y)dx\)B.\(\int_{0}^{1}dy\int_{0}^{y}f(x,y)dx\)

C.\(\int_{1}^{0}dy\int_{y}^{1}f(x,y)dx\)D.\(\int_{1}^{0}dy\int_{0}^{y}f(x,y)dx\)

6.幂级数\(\sum_{n=0}^{\infty}x^n\)的收敛半径\(R\)=()

A.\(0\)B.\(1\)C.\(+\infty\)D.\(2\)

7.微分方程\(y^\prime=2x\)的通解是()

A.\(y=x^2+C\)B.\(y=2x^2+C\)C.\(y=x^2\)D.\(y=2x^2\)

8.设\(z=e^{xy}\),则\(dz\)=()

A.\(e^{xy}dx\)B.\(e^{xy}dy\)C.\(ye^{xy}dx+xe^{xy}dy\)D.\(xe^{xy}dx+ye^{xy}dy\)

9.曲线\(x=t\),\(y=t^2\),\(z=t^3\)在点\((1,1,1)\)处的切线方程为()

A.\(\frac{x-1}{1}=\frac{y-1}{2}=\frac{z-1}{3}\)B.\(\frac{x-1}{1}=\frac{y-1}{1}=\frac{z-1}{1}\)

C.\(\frac{x-1}{3}=\frac{y-1}{2}=\frac{z-1}{1}\)D.\(\frac{x-1}{1}=\frac{y-1}{3}=\frac{z-1}{2}\)

10.设\(D\)是由\(x=0\),\(y=0\),\(x+y=1\)围成的区域,则\(\iint_{D}dxdy\)=()

A.\(\frac{1}{2}\)B.\(1\)C.\(\frac{1}{3}\)D.\(\frac{1}{4}\)

二、多项选择题(每题2分,共20分)

1.下列向量中,与向量\(\vec{a}=(1,1,1)\)垂直的向量有()

A.\((1,-1,0)\)B.\((-1,1,0)\)C.\((1,0,-1)\)D.\((0,1,-1)\)

2.二元函数\(z=f(x,y)\)在点\((x_0,y_0)\)处可微的充分条件有()

A.\(f_x(x,y)\),\(f_y(x,y)\)在\((x_0,y_0)\)连续

B.\(f(x,y)\)在\((x_0,y_0)\)的全增量\(\Deltaz=A\Deltax+B\Deltay+o(\rho)\)

C.\(f_x(x_0,y_0)\),\(f_y(x_0,y_0)\)存在

D.\(f(x,y)\)在\((x_0,y_0)\)处连续

3.下列级数中,收敛的级数有()

A.\(\sum_{n=1}^{\infty}\frac{1}{n^2}\)B.\(\sum_{n=1}^{\infty}\frac{1}{n}\)C.\(\sum_{n=1}^{\infty}(-1)^{n-

显示全部
相似文档