2008高考四川数学文科试卷含详细解答(全word版)080622.doc
文本预览下载声明
2008年普通高等学校招生全国统一考试(四川卷)
数 学(文科)及详解详析
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页。全卷满分150分,考试时间120分钟。
考生注意事项:
答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致。
答第Ⅰ卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动、用橡皮擦干净后,再选涂其他答案标号。
答第Ⅱ卷时,必须用0.5毫米黑色墨水签字笔在答题卡上书写。在试题卷上作答无效。
考试结束,监考员将试题卷和答题卡一并收回。
参考公式:
如果事件A、B互斥,那么 球的表面积公式
如果事件A、B相互独立,那么 其中R表示球的半径
球的体积公式
如果事件在一次实验中发生的概率是,那么
次独立重复实验中事件恰好发生次的概率 其中R表示球的半径
第Ⅰ卷
一.选择题:
1.设集合,则( B )
(A) (B) (C) (D)
【解】:∵ ∴
又∵ ∴ 故选B;
【考点】:此题重点考察集合的交集,补集的运算;
【突破】:画韦恩氏图,数形结合;
2.函数的反函数是( C )
(A) (B)
(C) (D)
【解】:∵由反解得 ∴ 从而淘汰(B)、(D)
又∵原函数定义域为 ∴反函数值域为 故选C;
【考点】:此题重点考察求反函数的方法,考察原函数与反函数的定义域与值域的互换性;
【突破】:反解得解析式,或利用原函数与反函数的定义域与值域的互换对选项进行淘汰;
3.设平面向量,则( A )
(A) (B) (C) (D)
【解】:∵ ∴
故选C;
【考点】:此题重点考察向量加减、数乘的坐标运算;
【突破】:准确应用向量的坐标运算公式是解题的关键;
4.( D )
(A) (B) (C) (D)
【解】:∵
故选D;
【点评】:此题重点考察各三角函数的关系;
【突破】:熟悉三角公式,化切为弦;以及注意;
5.不等式的解集为( A )
(A) (B) (C) (D)
【解】:∵ ∴ 即, ,
∴ 故选A;
【点评】:此题重点考察绝对值不等式的解法;
【突破】:准确进行不等式的转化去掉绝对值符号为解题的关键,可用公式法,平方法,特值验证淘汰法;
6.直线绕原点逆时针旋转,再向右平移1个单位,所得到的直线为( A )
(A) (B)
(C) (D)
【解】:∵直线绕原点逆时针旋转的直线为,从而淘汰(C),(D)
又∵将向右平移1个单位得,即 故选A;
【点评】:此题重点考察互相垂直的直线关系,以及直线平移问题;
【突破】:熟悉互相垂直的直线斜率互为负倒数,过原点的直线无常数项;重视平移方法:“左加右减”;
7.的三内角的对边边长分别为,若,则( B )
(A) (B) (C) (D)
【解】:∵中 ∴∴ 故选B;
【点评】:此题重点考察解三角形,以及二倍角公式;
【突破】:应用正弦定理进行边角互化,利用三角公式进行角的统一,达到化简的目的;在解三角形中,利用正余弦定理进行边角转化是解题的基本方法,在三角函数的化简求值中常要重视角的统一,函数的统一,降次思想的应用。
8.设是球心的半径的中点,分别过作垂直于的平面,截球面得两个圆,则这两个圆的面积比值为:( D )
(A) (B) (C) (D)
【解】:设分别过作垂线于的面截球得三个圆的半径为,球半径为,
则:
∴ ∴这两个圆的面积比值为: 故选D
【点评】:此题重点考察球中截面圆半径,球半径之间的关系;
【突破】:画图数形结合,提高空间想象能力,利用勾股定理;
9.函数满足,若,则( C )
(A) (B) (C) (D)
【解】:∵且 ∴,,
,,,,
∴ ,∴ 故选C
【点评】:此题重点考察递推关系下的函数求值;
【突破】:此类题的解决方法一般是求出函数解析式后代值,或者得到函数的周期性求解;
10.设直线平面,过平面外一点与都成角的直线有且只有:( B )
(A)1条 (B)2条 (C)3条 (D)4条
【解】:如图,和成角的直线一定是以A为顶点的圆锥的母线所在
显示全部