91高考数学基础知识总结-第三章数列.doc
文本预览下载声明
高中数学3. 数 列 知识要点 递推公式 ; ; 通项公式 () 中项 () () 前项和
重要性质
1. ⑴等差、等比数列:
等差数列 等比数列 定义 通项公式 =+(n-1)d=+(n-k)d=+-d
求和公式
中项公式 A= 推广:2= 。推广: 性质 1 若m+n=p+q则 若m+n=p+q,则。 2 若成A.P(其中)则也为A.P。 若成等比数列 (其中),则成等比数列。 3 . 成等差数列。 成等比数列。 4 , 5
⑵看数列是不是等差数列有以下三种方法:
①
②2()
③(为常数).
⑶看数列是不是等比数列有以下四种方法:
①
②(,)①
注①:i. ,是a、b、c成等比的双非条件,即a、b、c等比数列.
ii. (ac>0)→为a、b、c等比数列的充分不必要.
iii. →为a、b、c等比数列的必要不充分.
iv. 且→为a、b、c等比数列的充要.
注意:任意两数a、c不一定有等比中项,除非有ac>0,则等比中项一定有两个.
③(为非零常数).
④正数列{}成等比的充要条件是数列{}()成等比数列.
⑷数列{}的前项和与通项的关系:
[注]: ①(可为零也可不为零→为等差数列充要条件(即常数列也是等差数列)→若不为0,则是等差数列充分条件).
②等差{}前n项和 →可以为零也可不为零→为等差的充要条件→若为零,则是等差数列的充分条件;若不为零,则是等差数列的充分条件.
③非零常数列既可为等比数列,也可为等差数列.(不是非零,即不可能有等比数列)
2. ①等差数列依次每k项的和仍成等差数列,其公差为原公差的k2倍;
②若等差数列的项数为2,则;
③若等差数列的项数为,则,且,
.
3. 常用公式:①1+2+3 …+n =
②
③
[注]:熟悉常用通项:9,99,999,…; 5,55,555,….
4. 等比数列的前项和公式的常见应用题:
⑴生产部门中有增长率的总产量问题. 例如,第一年产量为,年增长率为,则每年的产量成等比数列,公比为. 其中第年产量为,且过年后总产量为:
⑵银行部门中按复利计算问题. 例如:一年中每月初到银行存元,利息为,每月利息按复利计算,则每月的元过个月后便成为元. 因此,第二年年初可存款:
=.
⑶分期付款应用题:为分期付款方式贷款为a元;m为m个月将款全部付清;为利率.
5. 数列常见的几种形式:
(p、q为二阶常数)用特证根方法求解具体步骤:写出特征方程(对应,x对应),并设二根②若可设,若可设;③由初始值确定(P、r为常数)用①转化等差,等比数列;②逐项选代;③消去常数n转化为的形式,再用特征根方法求;④(公式法),由确定①转化等差,等比:.
②选代法:
③用特征方程求解:由选代法推导结果:项和为,在时,有最大值. 如何确定使取最大值时的值,有两种方法:
一是求使,成立的值;二是由利用二次函数的性质求的值.
⑵如果数列可以看作是一个等差数列与一个等比数列的对应项乘积,求此数列前项和可依照等比数列前项和的推倒导方法:错位相减求和. 例如:
⑶两个等差数列的相同项亦组成一个新的等差数列,此等差数列的首项就是原两个数列的第一个相同项,公差是两个数列公差的最小公倍数.
2. 判断和证明数列是等差(等比)数列常有三种方法:(1)定义法:对于n≥2的任意自然数,验证为同一常数。(2)通项公式法。(3)中项公式法:验证都成立。
3. 在等差数列{}中,有关Sn 的最值问题:(1)当0,d0时,满足的项数m使得取最大值. (2)当0,d0时,满足的项数m使得取最小值。在解含绝对值的数列最值问题时,注意转化思想的应用。
(三)、数列求和的常用方法
1. 公式法:适用于等差、等比数列或可转化为等差、等比数列的数列。
2.裂项相消法:适用于其中{ }是各项不为0的等差数列,c为常数;部分无理数列、含阶乘的数列等。
3.错位相减法:适用于其中{ }是等差数列,是各项不为0的等比数列。
4.倒序相加法: 类似于等差数列前n项和公式的推导方法.
5.常用结论
1): 1+2+3+...+n =
2) 1+3+5+...+(2n-1) =
3)
4)
5)
6)
知识改变命运,学习成就未来
欢迎各位老师踊跃投稿,稿酬丰厚 邮箱:zxjkw@163.com
第 5 页 共 7 页
数列
数列的定义
数列的有关概念
数列的通项
数列与函数的关系
项
项数
通项
等差数列
等差数列的定义
等差数列的通
显示全部