多元函数微分学部分习题解析.pdf
文本预览下载声明
õ ¼© Æ SK
!ÀJK
1§ f (x, y) = xy + (y − 1) arcsin x , K f ′ (x, 1) = ( )
y x
µǑ f (x, 1) = x, ¤ fx (x, 1) = 1
y
x
2, u = z , K du (1,1,1) = ( )
1 (ln y −ln z)
µu = e x u (1, 1, 1) = 0, u (1, 1, 1) = 1, u (1, 1, 1) = −1, ¤ du = dy − dz
x y z
3, ¼ f (x, y) 3 : (x , y ) ? 5 §( ·K
0 0
A) ë Y 3 7^
£
£B) 3 ë Y ©^
£C) 3 © 7^
(D) ë Y 3 ©^
µD (
2 ∂u 2 ∂u
4 § u = u(x, y) § y = x §k u(x, y) = 1 9 = x, K y = x (x = 0) § = ( ),
∂x ∂y
A. 1 , B. − 1 , C.0 D.1
2 2
∂u 1 2 2 2 1 2 1
µd ∂x = x, =⇒ u = 2 x + ϕ(y) 5 u(x, x ) = 1 =⇒ ϕ(x ) = 1 − 2 x , =⇒ ϕ(y) = 1 − 2 y
¤ u(x, y) = 1 x2 + 1 − 1 y ,=⇒ ∂u = − 1
2 2 ∂y 2
2
sin(x y)
5. f (x, y) = xy , xy = 0 , K f ′ (0, 1) = ( )
x
x, xy = 0
A.0, B.√1, C. 2D. Ø 3
f (0, 1) = lim f (x,1)−f (0,1) = lim sin x2 = 1
µ x 2
x→0 x x→0 x
6. |^C þ O u = x, v = y ò x ∂z + y ∂z = z z Ǒ# ( )
x ∂x ∂y
A√.u ∂z = z, B.v ∂z = z, C.u ∂z = z, D.v ∂z = z
∂u ∂v ∂v ∂u
显示全部