文档详情

十坐标系与参数方程.doc

发布:2017-03-28约1.47千字共4页下载文档
文本预览下载声明
十二、坐标系与参数方程 1.(安徽理5)在极坐标系中,点的圆心的距离为 (A)2 (B) (C) (D) 2.(北京理3)在极坐标系中,圆ρ=-2sinθ的圆心的极坐标系是 A. B. C. (1,0) D.(1,) 3.(天津理11)已知抛物线的参数方程为(为参数)若斜率为1的直线经过抛物线的焦点,且与圆相切,则=________. 4.在极坐标系中,直线与直线的夹角大小为 。 5.(坐标系与参数方程选做题)直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,设点A,B分别在曲线(为参数)和曲线上, 则的最小值为 。 6.(湖南理9)在直角坐标系xOy中,曲线C1的参数方程为(为参数)在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,曲线C2的方程为,则C1与C2的交点个数为 7.(江西理15)(1)(坐标系与参数方程选做题)若曲线的极坐标方程为以极点为原点,极轴为轴正半轴建立直角坐标系,则该曲线的直角坐标方程为 8.(广东理14)(坐标系与参数方程选做题)已知两曲线参数方程分别为 和,它们的交点坐标为___________. 9.在直接坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为 . (I)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,),判断点P与直线l的位置关系; (II)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值. 10.在平面直角坐标系xOy中,曲线C1的参数方程为(为参数),曲线C2的参数方程为(,为参数),在以O为极点,x轴的正半轴为极轴的极坐标 系中,射线l:θ=与C1,C2各有一个交点.当=0时,这两个交点间的距离为2,当=时,这两个交点重合. (I)分别说明C1,C2是什么曲线,并求出a与b的值; (II)设当=时,l与C1,C2的交点分别为A1,B1,当=时,l与C1,C2的交点为A2,B2,求四边形A1A2B2B1的面积. 10【解】:(I)C1是圆,C2是椭圆. 当时,射线l与C1,C2交点的直角坐标分别为(1,0),(a,0),因为这两点间的距离为2,所以a=3. 当时,射线l与C1,C2交点的直角坐标分别为(0,1),(0,b),因为这两点重合,所以b=1. (II)C1,C2的普通方程分别为 当时,射线l与C1交点A1的横坐标为,与C2交点B1的横坐标为 当时,射线l与C1,C2的两个交点A2,B2分别与A1,B1关于x轴对称,因此, 四边形A1A2B2B1为梯形. 故四边形A1A2B2B1的面积为 …………10分 1 D 2 B 3【答案】 ;4【答案】 ; 5[3];6【答案】2 ;7【答案】 8【答案】 ;9【答案】本小题主要考查极坐标与直角坐标的互化、椭圆的参数方程等基础知识,考查运算求解能力,考查化归与转化思想。满分7分。 解:(I)把极坐标系下的点化为直角坐标,得P(0,4)。 因为点P的直角坐标(0,4)满足直线的方程, 所以点P在直线上, (II)因为点Q在曲线C上,故可设点Q的坐标为, 从而点Q到直线的距离为 , 由此得,当时,d取得最小值,且最小值为
显示全部
相似文档