平行四边形的性质的上课课件(陈伯平).ppt
文本预览下载声明
南屏初中 陈伯平
人教版数学八年级下册第十九章
三角形
特殊三角形
四边形
特殊四边形
两组对边分别平行
平行四边形满足两个条件:
1.四边形
2.两组对边分别平行
平行四边形的对边相等.
平行四边形的对角相等.
已知:四边形ABCD是平行四边形.
求证:(1)AB=CD,AD=BC .
(2)∠A= ∠C,∠B= ∠D .
化归法:有关四边形的问题常常可转化为三角形问题来处理.
1.在□ ABCD中,
(1)已知∠A=130° ,则∠B=____ ,∠C=____ , ∠D=____.
(2)如果 ∠A+∠C=220°,求∠B .
(3)如果2∠A-∠B=60°,求∠C.
50°
130°
50°
2.在□ ABCD中,已知AB=6,
(1)如果AB的2倍比BC多4,求AD.
(2)要想□ ABCD的周长为40,可以添加的条件为_______.(写出一个即可)
如图,D、E、F分别在的△ABC的三边BC、AC、
AB上,且EF∥BC ,DF∥AC, DE∥AB.
(1)请你找出图中的平行四边形.
(2)请你找出图中与∠A相等的角.
(3)你还能得到什么结论?
答:(1)图中的平行四边形有: □ CDFE、 □ DBFE、 □ AEDF.
(2)图中与∠A相等的角有: ∠DFB、∠CED 、∠EDF.
如图,在□ABCD中,已知AB=5,E在AD上且BE平分∠ABC,
(1)在上述条件下我们求图中哪些线段的长?
(2)如果再加上条件F在AD上且CF平分∠BCD呢?你还能得到哪些结论?
F
感悟与收获
1.平行四边形的表示.
2.平行四边形的性质及性质的应用.
3.数学方法.
研究几何图形的方法:从一般到特殊.
探索图形特征的一般步骤:观察、猜想、归纳、验证、推理.
化归法:有关四边形的问题常常可转化为三角形问题来处理.
必做题:习题19 . 1 1、2、7 .
选作题:
1 .习题19 . 1 6 .
2 .在□ABCD中,已知AB=5,BE平分∠ABC, CF平分∠BCD, BE 、 CF 分别与AD交于E 、 F ,且EF=1,求AD .
3 .用平行四边形设计一些漂亮的图案.
显示全部