最近八年函数江苏高考数学压轴题.doc
文本预览下载声明
PAGE
PAGE 10
1. (2013)20.(本小题满分16分)
设函数,,其中为实数.
(1)若在上是单调减函数,且在上有最小值,求的取值范围;
(2)若在上是单调增函数,试求的零点个数,并证明你的结论.
解:(1)≤0在上恒成立,则≥, .
故:≥1.
,
若1≤≤e,则≥0在上恒成立,
此时,在上是单调增函数,无最小值,不合;
若>e,则在上是单调减函数,在上是单调增函数,,满足.
故的取值范围为:>e.
(2)≥0在上恒成立,则≤ex,
故:≤ eq \f(1,e) .
.
(ⅰ)若0<≤ eq \f(1,e) ,令>0得增区间为(0, eq \f(1,a) );
令<0得减区间为( eq \f(1,a) ,﹢∞).
当x→0时,f(x)→﹣∞;当x→﹢∞时,f(x)→﹣∞;
当x= eq \f(1,a) 时,f( eq \f(1,a) )=﹣lna-1≥0,当且仅当= eq \f(1,e) 时取等号.
故:当= eq \f(1,e) 时,f(x)有1个零点;当0<< eq \f(1,e) 时,f(x)有2个零点.
(ⅱ)若a=0,则f(x)=﹣lnx,易得f(x)有1个零点.
(ⅲ)若a<0,则在上恒成立,
即:在上是单调增函数,
当x→0时,f(x)→﹣∞;当x→﹢∞时,f(x)→﹢∞.
此时,f(x)有1个零点.
综上所述:当= eq \f(1,e) 或a<0时,f(x)有1个零点;当0<< eq \f(1,e) 时,f(x)有2个零点.
2.(2012) 已知a,b是实数,1和是函数的两个极值点.
(1)求a和b的值;
(2)设函数的导函数,求的极值点;
(3)设,其中,求函数的零点个数.
解析:
3. (2011)19、(本小题满分16分)已知a,b是实数,函数 和是的导函数,若在区间I上恒成立,则称和在区间I上单调性一致
(1)设,若函数和在区间上单调性一致,求实数b的取值范围;
(2)设且,若函数和在以a,b为端点的开区间上单调性一致,求|a-b|的最大值。
[解析]本小题主要考查函数的概念、性质及导数等基础知识,考查灵活运用数形结合、分类讨论的思想方法进行探索、分析与解决问题的综合能力。满分16分。
(1)因为函数和在区间上单调性一致,所以,即
即
(2)当时,因为,函数和在区间(b,a)上单调性一致,所以,
即,
设,考虑点(b,a)的可行域,函数的斜率为1的切线的切点设为
则;
当时,因为,函数和在区间(a, b)上单调性一致,所以,
即,
当时,因为,函数和在区间(a, b)上单调性一致,所以,
即而x=0时,不符合题意,
当时,由题意:
综上可知,。
4.(2010) 20、(本小题满分16分)
设是定义在区间上的函数,其导函数为。如果存在实数和函数,其中对任意的都有0,使得,则称函数具有性质。
(1)设函数,其中为实数。
(i)求证:函数具有性质; (ii)求函数的单调区间。
(2)已知函数具有性质。给定设为实数,
,,且,
若||||,求的取值范围。
[解析] 本小题主要考查函数的概念、性质、图象及导数等基础知识,考查灵活运用数形结合、分类讨论的思想方法进行探索、分析与解决问题的综合能力。满分16分。
(1)(i)
∵时,恒成立,
∴函数具有性质;
(ii)(方法一)设,与的符号相同。
当时,,,故此时在区间上递增;
当时,对于,有,所以此时在区间上递增;
当时,图像开口向上,对称轴,而,
对于,总有,,故此时在区间上递增;
(方法二)当时,对于,
所以,故此时在区间上递增;
当时,图像开口向上,对称轴,方程的两根为:,而
当时,,,故此时在区间 上递减;同理得:在区间上递增。
综上所述,当时,在区间上递增;
当时,在上递减;在上递增。
(2)(方法一)由题意,得:
又对任意的都有0,
所以对任意的都有,在上递增。
又。
当时,,且,
综合以上讨论,得:所求的取值范围是(0,1)。
(方法二)由题设知,的导函数,其中函数对于任意的都成立。所以,当时,,从而在区间上单调递增。
①当时,有,
,得,同理可得,所以由的单调性知、,
从而有||||,符合题设。
②当时,,
,于是由及的单调性知,所以||≥||,与题设不符。
③当时,同理可得,进而得||≥||,与题设不符。
因此综合①、②、③得所求的的取值范围是(0,1)。
5.(2009)20.(本小题满分16分)
设为实数,函数.
(1)若,求的取值范围;
(2)求的最小值;
(3)设函数,直接写出(不需给出演算步骤)不等式的解集.
[解析] 本小题主要考查函数的概念、性质、图象及解一元二次不等式等基础知识,考查灵活运用数形结合、分类讨论的思想方法进行探索、分析与解
显示全部