浙江专用2018版高考数学大一轮复习第九章平面解析几何9.4直线与圆圆与圆的位置关系.doc
文本预览下载声明
(浙江专用)2018版高考数学大一轮复习 第九章 平面解析几何 9.4 直线与圆、圆与圆的位置关系教师用书
1.判断直线与圆的位置关系常用的两种方法
(1)几何法:利用圆心到直线的距离d和圆半径r的大小关系.
dr相交;d=r相切;dr相离.
(2)代数法:
2.圆与圆的位置关系
设圆O1:(x-a1)2+(y-b1)2=r(r10),
圆O2:(x-a2)2+(y-b2)2=r(r20).
几何法:圆心距d与r1,r2的关系 代数法:联立两圆方程组成方程组的解的情况 外离 dr1+r2 无解 外切 d=r1+r2 一组实数解 相交 |r1-r2|dr1+r2 两组不同的实数解 内切 d=|r1-r2|(r1≠r2) 一组实数解 内含 0≤d|r1-r2|(r1≠r2) 无解
【知识拓展】
1.圆的切线方程常用结论
(1)过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为x0x+y0y=r2.
(2)过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的圆的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2.
(3)过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程为x0x+y0y=r2.
2.圆与圆的位置关系的常用结论
(1)两圆的位置关系与公切线的条数:①内含:0条;②内切:1条;③相交:2条;④外切:3条;⑤外离:4条.
(2)当两圆相交时,两圆方程(x2,y2项系数相同)相减便可得公共弦所在直线的方程.
【思考辨析】
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.( × )
(2)如果两圆的圆心距小于两圆的半径之和,则两圆相交.( × )
(3)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.( × )
(4)过圆O:x2+y2=r2上一点P(x0,y0)的圆的切线方程是x0x+y0y=r2.( √ )
(5)过圆O:x2+y2=r2外一点P(x0,y0)作圆的两条切线,切点分别为A,B,则O,P,A,B四点共圆且直线AB的方程是x0x+y0y=r2.( √ )
1.(教材改编)圆(x-1)2+(y+2)2=6与直线2x+y-5=0的位置关系是( )
A.相切 B.相交但直线不过圆心
C.相交过圆心 D.相离
答案 B
解析 由题意知圆心(1,-2)到直线2x+y-5=0的距离d==且2×1+(-2)-5≠0,
所以直线与圆相交但不过圆心.
2.(2016·全国甲卷)圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a等于( )
A.- B.- C. D.2
答案 A
解析 由圆的方程x2+y2-2x-8y+13=0,得圆心坐标为(1,4),由点到直线的距离公式得d==1,解得a=-.
3.(2016·嘉兴高三下学期教学测试二)若点A,B为圆(x-2)2+y2=25上的两点,点P(3,-1)为弦AB的中点,则弦AB所在的直线方程为________.
答案 x-y-4=0
解析 设圆心为M,则M(2,0),∴kMP=-1,
∴直线AB的斜率为1,
∴直线AB方程为y+1=x-3,即x-y-4=0.
4.(2016·黑龙江大庆实验中学检测)已知圆C1:(x-2)2+(y-3)2=1,圆C2:(x-3)2+(y-4)2=9,M,N分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为_____.
答案 5-4
解析 圆C1关于x轴对称的圆C1′的圆心为C1′(2,-3),半径不变,圆C2的圆心为(3,4),半径r=3,|PM|+|PN|的最小值为圆C1′和圆C2的圆心距减去两圆的半径,所以|PM|+|PN|的最小值为-1-3=5-4.
题型一 直线与圆的位置关系的判断
例1 (1)已知点M(a,b)在圆O:x2+y2=1外,则直线ax+by=1与圆O的位置关系是( )
A.相切 B.相交C.相离 D.不确定
(2)(2016·江西吉安月考)圆x2+y2-2x+4y=0与直线2tx-y-2-2t=0(t∈R)的位置关系为( )
A.相离 B.相切C.相交 D.以上都有可能
答案 (1)B (2)C
解析 (1)因为M(a,b)在圆O:x2+y2=1外,所以a2+b21,而圆心O到直线ax+by=1的距离d==1.
所以直线与圆相交.
(2)直线2tx-y-2-2t=0恒过点(1,-2),
∵12+(-2)2-2×1+4×(-2)=-50,
∴点(1,-2)在圆x2+y2-2x+4y=0内.
直线2tx-y-2-2t=0与圆x2+y2-2x+4y=0相交,
故选C.
思维升华 判断直线与圆的位置
显示全部