2019届高考数学(北师大版文)复习讲义:第二章 函数概念与基本初等函数Ⅰ+第1讲 函数及其表示.1+Word版含答案.doc
文本预览下载声明
§2.1 函数及其表示
最新考纲 考情考向分析 1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念.
2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.
3.了解简单的分段函数,并能简单应用(函数分段不超过三段). 以基本初等函数为载体,考查函数的表示法、定义域;分段函数以及函数与其他知识的综合是高考热点,题型既有选择、填空题,又有解答题,中等偏上难度.
1.函数与映射
函数 映射 两个集合A,B 设A,B是两个非空数集 设A,B是两个非空集合 对应关系f:A→B 如果按照某个对应关系f,使对于集合A中的任何一个数x,在集合B中都存在唯一确定的数f(x)和它对应 如果按某一个确定的对应关系f,使对于集合A中的每一个元素x,在集合B中都有唯一的元素y与之对应 名称 称f:A→B为从集合A到集合B的一个函数 称f:A→B为从集合A到集合B的一个映射 函数记法 函数y=f(x),x∈A 映射:f:A→B
2.函数的有关概念
(1)函数的定义域、值域
在函数y=f(x),x∈A中,x叫作自变量,x的取值范围A叫作函数的定义域;与x的值相对应的y值叫作函数值,函数值的集合{f(x)|x∈A}叫作函数的值域.
(2)函数的三要素:定义域、对应关系和值域.
(3)函数的表示法
表示函数的常用方法有解析法、图像法和列表法.
3.分段函数
若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.
分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.
知识拓展
简单函数定义域的类型
(1)f(x)为分式型函数时,定义域为使分母不为零的实数集合;
(2)f(x)为偶次根式型函数时,定义域为使被开方式非负的实数的集合;
(3)f(x)为对数式时,函数的定义域是真数为正数、底数为正且不为1的实数集合;
(4)若f(x)=x0,则定义域为{x|x≠0};
(5)指数函数的底数大于0且不等于1;
(6)正切函数y=tan x的定义域为.
题组一 思考辨析
1.判断下列结论是否正确(请在括号中打“√”或“×”)
(1)对于函数f:A→B,其值域就是集合B.( × )
(2)若两个函数的定义域与值域相同,则这两个函数相等.( × )
(3)函数f(x)的图像与直线x=1最多有一个交点.( √ )
(4)若A=R,B={x|x0},f:x→y=|x|,其对应是从A到B的映射.( × )
(5)分段函数是由两个或几个函数组成的.( × )
题组二 教材改编
2.函数f(x)=的定义域是________.
答案 (-∞,1)∪(1,4]
3.函数y=f(x)的图像如图所示,那么,f(x)的定义域是________;值域是________;其中只有唯一的x值与之对应的y值的范围是________.
答案 [-3,0]∪[2,3] [1,5] [1,2)∪(4,5]
题组三 易错自纠
4.已知函数f(x)=x|x|,若f(x0)=4,则x0的值为______.
答案 2
解析 当x≥0时,f(x)=x2,f(x0)=4,
即x=4,解得x0=2.
当x0时,f(x)=-x2,f(x0)=4,
即-x=4,无解,所以x0=2.
5.设f(x)=则f(f(-2))=________.
答案
解析 因为-2<0,所以f(-2)=2-2=>0,
所以f(f(-2))=f=1-=1-=.
6.已知函数f(x)=ax3-2x的图像过点(-1,4),则a=________.
答案 -2
解析 由题意知点(-1,4)在函数f(x)=ax3-2x的图像上,所以4=-a+2,则a=-2.
题型一 函数的概念
1.若函数y=f(x)的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数y=f(x)的图像可能是( )
答案 B
解析 A中函数的定义域不是[-2,2],C中图像不表示函数,D中函数值域不是[0,2],故选B.
2.有以下判断:
①f(x)=与g(x)=表示同一函数;
②f(x)=x2-2x+1与g(t)=t2-2t+1是同一函数;
③若f(x)=|x-1|-|x|,则f=0.
其中正确判断的序号是________.
答案 ②
解析 对于①,由于函数f(x)=的定义域为{x|x∈R且x≠0},而函数g(x)=的定义域是R,所以二者不是同一函数,故①不正确;对于②,f(x)与g(t)的定义域、值域和对应关系均相同,所以f(x)和g(t)表示同一函数,故②正确;
对于③,由于f=-=0,
所以f=f(0)=1,故③不正确.
综上可知,正确的判断是②.
思维升华函数的值域可由定
显示全部