文档详情

微分方程一阶.pptx

发布:2020-02-24约小于1千字共23页下载文档
文本预览下载声明
当一次谋杀发生后,尸体的温度从原来的37℃按照牛顿冷却定律(物体的温度的变化率与该物体与周围介质温度之差成正比)开始变凉。假设两小时后尸体温度变为35℃,并且假定周围空气的温度保持20℃不变。(1)求出自谋杀发生后尸体的温度H是如何作为时间t(以小时为单位)的函数随时间变化的;(2)画出温度—时间曲线;(3)最终尸体的温度如何?用图像和代数两种方式表示这种结果;(4)如果尸体被发现时的温度是30℃,时间是下午4时,那么谋杀是何时发生的?;分析:要建立尸体的温度 与时间 的函数关系;解;凡含有未知函数的导数或微分的方程叫微分方程.;微分方程的解:代入微分方程能使方程成为恒等式的函数 ;一阶微分方程的初始条件:;称为可分离变量的微分方程.;例 求微分方程;通解为;分离变量;解 :;一阶线性微分方程的标准形式:;齐次方程的通解为;采用常数变易法;积分得;例;例;解2;例;一阶线性;练习:解下列微分方程;
显示全部
相似文档