精品第五章线性系统的频域分析法.ppt
文本预览下载声明
5.5 稳定裕度 控制系统稳定与否是绝对稳定性的概念。而对一个稳定的系统而言,还有一个稳定的程度,即相对稳定性的概念。相对稳定性与系统的动态性能指标有着密切的关系。在设计一个控制系统时,不仅要求它必须是绝对稳定的,而且还应保证系统具有一定的稳定程度。只有这样,才能不致因系统参数变化而导致系统性能变差甚至不稳定。 对于一个最小相角系统而言, 曲线越靠近 点,系统阶跃响应的振荡就越强烈,系统的相对稳定性就越差。因此,可用 曲线对 点的接近程度来表示系统的相对稳定性。通常,这种接近程度是以相角裕度和幅值裕度来表示的。 相角裕度和幅值裕度是系统开环频率指标,它与闭环系统的动态性能密切相关。 1 相角裕度 相角裕度是指幅相频率特性 的幅值 时的向量与负实轴的夹角,常用希腊字母 表示 截止频率 其涵义是:对于闭环稳定系统,如果开环相频特性再滞后 则系统将变为临界稳定。 的几何意义 相角交界频率 2.幅值裕度 的物理意义 系统在 方面的稳定储备量 幅值 相角 一般要求 选10-20dB 在相位交界频率wg上,开环幅频特性的倒数称为控制系统的幅值(或增益)裕量,记做h。其涵义是:对于闭环稳定系统,如果系统开环幅频特性再增大h倍,则系统将变为临界稳定。 临界稳定 解法I:由幅相曲线求 例3 ,求 (1)令 试根得 (2.1)令 可得 (2.2)将G(jw)分解为实部、虚部形式 令 得 代入实部 由L(w): 得 解法II:由Bode图求 解.作L(w)求 法I: 例4 ,求 法II: 求wg 整理得 解出 5.6 闭环系统的频域性能指标 根据开环频率特性来分析系统的性能是控制系统分析和设计的一种主要方法,它的特点是简便实用。但在工程实际中,有时也需了解闭环频率特性的基本概念和二阶系统中闭环频域指标与时域指标的关系。 单位反馈系统,其闭环传递函数为: 1 用向量法求闭环频率特性 * 自动控制原理 东华理工大学机电学院自动化系 第五章 线性系统的频域分析法 第五章 线性系统的频域分析法 5.1引言5.2频率特性5.3开环系统的典型环节分解和开环频率 特性曲线的绘制5.4频率域稳定判据5.5稳定裕度5.6闭环系统的频域性能指标 5.1引言 1)控制系统及其元部件的频率特性可以运用分析这和实验方法获得,并可用多种形式的曲线表示,因而系统分析和控制器设计可以应用图解法进行。 2)频率特性物理意义明确。对于一阶系统和二阶系统,频域性能指标和时域性能指标有确定的对应关系;对于高阶系统,可建立近似的对应关系。 3)控制系统频域设计可以兼顾动态响应和噪声抑制两方面的要求。 4)领域分析法不仅适用于线性定常系统,还可以推广应用于某些非线性控制系统。 本章介绍频率特性的基本概念和频率特性曲线的绘制方法,研究频率域稳定判据和频域性能指标的计算。 控制系统中的信号可以表示为不同频率正弦信号的合成。控制系统的频率特性反映正弦信号作用下系统响应的性能。应用频率特性研究线性系统的经典方法称为领域分析法。频域分析法具有以下特点: 在正弦输入信号作用下,环节或系统的输出稳态分量(或称频域响应)与正弦函数的复数比,称为环节或系统的频域特性。 R Uc C 1、 定义 引例: 也是同频率的正弦信号,只不过幅值和相位发生变化,它们之间的关系满足 传递函数为 令 1.代数形式 3.幅相特性表示法 2. 指数形式 5.极坐标图形式 在复平面,把频率特性的模和角同时表示出来的图就是极坐标图。 4.三角函数形式 5.2 对数频率特性 对数分度: 对数幅频特性绘在以10为底的半对数坐标中,幅值的对数值用分贝(dB)表示 对数频率特性优点: 1)展宽频率范围 2) 3)频率特性相乘,对数幅、相曲线相加 理解幅相频率特性图及Bode图的表达方式 0 -2 0 分贝 很静、几乎感觉不到; 2 0 -4 0 分贝安静、犹如轻声絮语; 4 0 -6 0 分贝一般。普通室内谈话; 6 0 -7 0 分贝吵闹、有损神经; 7 0 -9 0 分贝很吵、神经细胞受到破坏。9 0 -1 0 0 分贝 吵闹加剧、听力受损1 0 0 -1 2 0 分贝难以忍受、呆一分钟即暂时致聋。 120分贝以上:极度聋或全聋 5.3 开环系统的典型环节分解和开环频率特性曲线的绘制 ⑴ 比例环节 幅频特性: 相频特性: 比例环节的幅相特性是G平面实轴上的一个点,如图所示。表明比例环节稳态正弦响应的振幅是输入信号的K倍,且响应与输入同相位。 传递函数: 频率特性: 极坐标图: (奈氏图)
显示全部