文档详情

高二数学之不等式(二).doc

发布:2018-03-04约小于1千字共4页下载文档
文本预览下载声明
不等式专题(二) 一、不等式的基本性质 (1)(对称性) (2)(传递性) (3)(加法单调性) (4)(同向不等式相加) (5)(异向不等式相减) (6) (7)(乘法单调性) (8)(同向不等式相乘) (异向不等式相除) (倒数关系) (11)(平方法则) (12)(开方法则) 二、几个重要不等式 (1) (2)(当仅当a=b时取等号) (3)如果a,b都是正数,那么 (当仅当a=b时取等号) 极值定理:若则: 如果P是定值, 那么当x=y时,S的值最小; 如果S是定值, 那么当x=y时,P的值最大. 利用极值定理求最值的必要条件: 一正、二定、三相等. (当仅当a=b=c时取等号) (当仅当a=b时取等号) (7) 三、几个著名不等式 (1)平均不等式: 如果a,b都是正数,那么 (当仅当a=b时取等号) 即:平方平均≥算术平均≥几何平均≥调和平均(a、b为正数): 特别地,(当a = b时,) 幂平均不等式: 注:例如:. 常用不等式的放缩法: ① ② (2)柯西不等式: 不等式证明的几种常用方法 比较法、综合法、分析法、换元法、反证法、放缩法、构造法. 五、不等式的解法 (1)整式不等式的解法(根轴法). 步骤:正化,求根,标轴,穿线(偶重根打结),定解. 特例①一元一次不等式axb解的讨论; ②一元二次不等式ax2+bx+c0(a≠0)解的讨论. (2)分式不等式的解法:先移项通分标准化,则 (3)无理不等式:转化为有理不等式求解 (4).指数不等式:转化为代数不等式 (5)对数不等式:转化为代数不等式 (6)含绝对值不等式(去绝对值号是第一步) 应用分类讨论思想去绝对值; 应用数形思想; 应用化归思想等价转化 注:常用不等式的解法举例(x为正数): ① ② 类似于,③ 六、备注(补充习题) 第3页
显示全部
相似文档