高二数学之不等式(二).doc
文本预览下载声明
不等式专题(二)
一、不等式的基本性质
(1)(对称性)
(2)(传递性)
(3)(加法单调性)
(4)(同向不等式相加)
(5)(异向不等式相减)
(6)
(7)(乘法单调性)
(8)(同向不等式相乘)
(异向不等式相除)
(倒数关系)
(11)(平方法则)
(12)(开方法则)
二、几个重要不等式
(1)
(2)(当仅当a=b时取等号)
(3)如果a,b都是正数,那么 (当仅当a=b时取等号)
极值定理:若则:
如果P是定值, 那么当x=y时,S的值最小;
如果S是定值, 那么当x=y时,P的值最大.
利用极值定理求最值的必要条件: 一正、二定、三相等.
(当仅当a=b=c时取等号)
(当仅当a=b时取等号)
(7)
三、几个著名不等式
(1)平均不等式: 如果a,b都是正数,那么 (当仅当a=b时取等号)
即:平方平均≥算术平均≥几何平均≥调和平均(a、b为正数):
特别地,(当a = b时,)
幂平均不等式:
注:例如:.
常用不等式的放缩法:
①
②
(2)柯西不等式:
不等式证明的几种常用方法
比较法、综合法、分析法、换元法、反证法、放缩法、构造法.
五、不等式的解法
(1)整式不等式的解法(根轴法).
步骤:正化,求根,标轴,穿线(偶重根打结),定解.
特例①一元一次不等式axb解的讨论;
②一元二次不等式ax2+bx+c0(a≠0)解的讨论.
(2)分式不等式的解法:先移项通分标准化,则
(3)无理不等式:转化为有理不等式求解
(4).指数不等式:转化为代数不等式
(5)对数不等式:转化为代数不等式
(6)含绝对值不等式(去绝对值号是第一步)
应用分类讨论思想去绝对值; 应用数形思想;
应用化归思想等价转化
注:常用不等式的解法举例(x为正数):
①
②
类似于,③
六、备注(补充习题)
第3页
显示全部