高等数学(高等教育出版社)第十一章D对坐标曲线积分ok.ppt
文本预览下载声明
例3. 求 * 目录 上页 下页 返回 结束 第二节 一、对坐标的曲线积分的概念 与性质 二、 对坐标的曲线积分的计算法 三、两类曲线积分之间的联系 对坐标的曲线积分 第十一章 一、 对坐标的曲线积分的概念与性质 1. 引例: 变力沿曲线所作的功. 设一质点受如下变力作用 在 xOy 平面内从点 A 沿光滑曲线弧 L 移动到点 B, 求移 “分割” “作近似” “求和” “取极限” 常力沿直线所作的功 解决办法: 动过程中变力所作的功W. 1) “分割”. 2) “作近似” 把L分成 n 个小弧段, 有向小弧段 近似代替, 则有 所做的功为 F 沿 则 用有向线段 上任取一点 在 3) “求和” 4) “取极限” (其中? 为 n 个小弧段的 最大长度) 2. 定义. 设 L 为xOy 平面内从 A 到B 的一条有向光滑 弧, 若对 L 的任意分割和在局部弧段上任意取点, 都存在, 在有向曲线弧 L 上 对坐标的曲线积分, 则称此极限为函数 或第二类曲线积分. 其中, L 称为积分弧段 或 积分曲线 . 称为被积函数 , 在L 上定义了一个向量函数 极限 记作 若 ? 为空间曲线弧 , 记 称为对 x 的曲线积分; 称为对 y 的曲线积分. 若记 , 对坐标的曲线积分也可写作 类似地, 3. 性质 (1) 若 L 可分成 k 条有向光滑曲线弧 (2) 用L- 表示 L 的反向弧 , 则 则 说明: 对坐标的曲线积分必须注意积分弧段的方向 ! 二、对坐标的曲线积分的计算法 定理: 在有向光滑弧 L 上有定义且 L 的参数方程为 则曲线积分 连续, 存在, 且有 证明: 下面先证 对应参数 设分点 根据定义 由于 对应参数 因为L 为光滑弧 , 同理可证 特别是, 如果 L 的方程为 则 对空间光滑曲线弧 ? : 类似有 定理 例1. 计算 其中L 为沿抛物线 解法1 取 x 为参数, 则 解法2 取 y 为参数, 则 从点 的一段. 例2. 计算 其中L为 (1) 抛物线 (2) 抛物线 (3) 有向折线 解: (1) 原式 (2) 原式 (3) 原式 其中 从 z 轴正向看为顺时针方向. 解: 取 ? 的参数方程 三、两类曲线积分之间的联系 设有向光滑弧 L 以弧长为参数 的参数方程为 已知L切向量的方向余弦为 则两类曲线积分有如下联系 * 目录 上页 下页 返回 结束
显示全部