文档详情

太原理工大学微积分与数学模型(10年修改版)8-6.ppt

发布:2018-03-09约1.2千字共25页下载文档
文本预览下载声明
第六节 曲面及其方程 一 曲面方程的概念 二 旋转曲面 三 柱面 四 二次曲面 水桶的表面、台灯的罩子面等。 曲面在空间解析几何中被看成是点的几何轨迹。 曲面方程的定义 曲面的实例 一、曲面方程的概念 以下给出几例常见的曲面 解: 根据题意有 所求方程为 特殊地:球心在原点时方程为 解: 所以原方程表示球心为 半径为 的球面。 根据题意有 化简得所求方程 解: 例4 方程 的图形是怎样的? 根据题意有 图形上不封顶,下封底。 解: 以上几例表明研究空间曲面有两个基本问题 (2)已知坐标间的关系式,研究曲面形状。 (讨论旋转曲面) (讨论柱面、二次曲面) (1)已知曲面作为点的轨迹时,求曲面方程。 定义 以一条平面 曲线绕其平面上的 一条直线旋转一周 所成的曲面称为旋 转曲面。 这条定直线叫旋转 曲面的轴。 播放 二、 旋转曲面 旋转过程中的特征 如图 将 代入 (1) 得方程 解: 圆锥面方程 例6 将下列各曲线绕对应的轴旋转一周, 求生成的旋转曲面的方程。 旋转双曲面 旋转椭球面 旋转抛物面 播放 定义 观察柱面的形成过程 平行于定直线并沿定曲线 移动的 直线 所形成的曲面称为柱面。 这条定曲线 叫柱面的准线动直线 叫柱面的母线。 三、 柱面 柱面举例 抛物柱面 平面 从柱面方程看柱面的特征 (其他类推) 实 例 椭圆柱面 // 轴 双曲柱面 // 轴 抛物柱面 // 轴 1. 定义 三元二次方程表示的曲面, 称为二次曲面。 如球面 圆锥面、旋转曲面等 四、 二次曲面 2. 二次曲面的研究方法 (不能用描点法,而用截面法) 1) 对称性 (关于坐标面,坐标轴) 2) 存在范围 3) 曲面与坐标轴、坐标面的关系 4) 曲面弯曲状况 3. 几种重要的二次曲面 1)椭球面 y z 用平行于坐标面的平面去截曲面由所得截痕来 勾画曲面的大体形状。 特殊情形:a)当 a = b = c 时,此时为球面 b)当 a = b 时,此时为旋转曲面 c) 当 a = c 时,此时为旋转曲面 2) 抛物面 I) 椭圆抛物面 x y z 0 p = q 时,成为旋转抛物面 (p0,q0) d) 当 c = b 时,此时为旋转曲面 II) 双曲抛物面(马鞍面) x z y o x y z 3) 双曲面 I) 单叶双曲面 o x y z II) 双叶双曲面 x y z 0 或者 例7 指出下列方程所表示的曲面 * * * *
显示全部
相似文档