空间线面课时直线与平面垂直的判定.doc
文本预览下载声明
空间线面第7课时 直线与平面垂直的判定
(一)教学目标
1.知识与技能
(1)使学生掌握直线和平面垂直的定义及判定定理;
(2)使学生掌握直线和平面所成的角求法;
(3)培养学生的几何直观能力,使他们在直观感知,操作确认的基础上学会归纳、概括结论.
2.过程与方法
(1)通过教学活动,使学生了解,感受直线和平面垂直的定义的形成过程;
(2)探究判定直线与平面垂直的方法.
3.情态、态度与价值观
培养学生学会从“感性认识”到“理性认识”过程中获取新知.
(二)教学重点、难点
重点:(1)直线与平面垂直的定义和判定定理;
(2)直线和平面所成的角.
难点:直线与平面垂直判定定理的探究.
教学过程 教学内容 师生互动 设计意图 新课导入 问题:直线和平面平行的判定方法有几种? 师投影问题,学生回答.
生:可用定义可判断,也可依判定定理判断. 复习巩固 探索新知 一、直线和平面垂直的定义、画法
如果直线l与平面内的任意一条直线都垂直,我们说直线l与平面互相垂直,记作l⊥.直线l叫做平面的垂线,平面叫做直线l的垂面.直线与平面垂直时,它们惟一的公共点P叫做垂足.
画直线与平面垂直时,通常把直线画成与表不平面的平行四边形的一边垂直,如图.
师:日常生活中我们对直线与平面垂直有很多感性认识,如旗杆与地面,桥柱与水面等,你能举出更多的例子来吗?
师:在阳光下观察,直立于地面的旗杆及它在地面的影子,它们的位置关系如何?
生:旗杆与地面内任意一条经B的直线垂直.
师:那么旗杆所在直线与平面内不经过B点的直线位置关系如何,依据是什么?(图)
生:垂直,依据是异面直线垂直的定义.
师:你能尝试给线面垂直下定义吗?
……
师:能否将任意直线改为无数条直线?学生找一反例说明. 培养学生的几何直观能力使他们在直观感知,操作确认的基础上学会归纳概括结论. 探索新知 二、直线和平面垂直的判定
1.试验 如图,过△ABC的顶点A翻折纸片,得到折痕AD,将翻折后的纸片竖起放置在桌面上(BD、DC与桌面接触).
(1)折痕AD与桌面垂直吗?
(2)如何翻折才能使折痕AD与桌面所在平面垂直?
2.直线与平面垂直的判定定理:
一条直线与一个平面内两条相交直线都垂直,则该直线与此平面垂直.
思考:能否将直线与平面垂直的判定定理中的“两条相交直线”改为一条直线或两条平行直线? 师:下面请同学们准备一块三角形的小纸片,我们一起来做一个实验,(投影问题).
学生动手实验,然后回答问题.
生:当且仅当折痕AD是BC边上的高时,AD所在直线与桌面所在平面垂直.
师:此时AD垂直上的一条直线还是两条直线?
生:AD垂直于桌面两条直线,而且这两条直线相交.
师:怎么证明?
生:折痕AD⊥BC,翻折之后垂直关系不变,即AD⊥CD,AD⊥BD
……
师:直线和平面垂直的判定定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想. 培养学生的几何直观能力使他们在直观感知,操作确认的基础上学会归纳概括结论. 典例剖析 例1 如图,已知a∥b,a⊥,求证:b⊥.
证明:在平面内作两条相交直线m、n.
因为直线a⊥,根据直线与平面垂直的定义知
a⊥m,a⊥n.
又因为b∥a,
所以b⊥m,b⊥n.
又因为,m、n是两条相交直线,
b⊥. 师:要证b⊥,需证b与内任意一条直线的垂直,又a∥b,问题转化为a与面内任意直线m垂直,这个结论显然成立.
学生依图及分析写出证明过程.
……
师:此结论可以直接利用,判定直线和平面垂直. 巩固所知识培养学生转化化归能力、书写表达能力. 探索新知 二、直线和平面所成的角
如图,一条直线PA和一个平面相交,但不与这个平面垂直,这条直线叫做这个平面的斜线,斜线的平面的交点A叫做斜足.过斜线上斜足以外的一点向平面引垂线PO,过垂足O和斜足A的直线AO叫做斜线在这个平面上的射影.平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.
一条直线垂直于平面,我们说它们所成的角是直角;一条直线和平面平行,或在平面内,我们说它们所成的角是0°的角.
教师借助多媒体直接讲授,注意直线和平面所成的角是分三种情况定义的. 借助多媒体讲授,提高上课效率. 典例剖析 例2 如图,在正方体ABCD – A1B1C1D1中,求A1B和平面A1B1CD所成的角.
分析:找出直线A1B在平面A1B1CD内的射影,就可以求出A1B和平面A1B1CD所成的角.
解:连结BC1交B1C于点O,连结A1O.
设正方体的棱长为a,因为A1B1⊥B1C1, A1B1⊥B1B,所以A1B1⊥平面BCC1B1.
所以A1B1⊥BC1.
又因为BC1⊥B1C,所以B1C⊥平面A1B1CD.
所以A1O为斜线A1B在平面A1B1CD内的射影,∠BA1O为A
显示全部