[2018年最新整理]12-13随机过程试题B卷答案.doc
文本预览下载声明
第 1 页(共 3 页)
第 2 页(共 3 页)
第 3 页(共 3 页)
院(系): 专业: 年级: 学生姓名: 学号:
------------------------------------------------- 密 ---------------------------------- 封 ----------------------------- 线 ---------------------------------------------------------
华中师范大学 2012 –2013 学年第 1学期
期末考试试卷(B卷答案)
课程名称 应用随机过程 课程编号 任课教师 李波
题型 一 二 三 四 五 总分 分值 10 26 30 24 10 100 得分
得分 评阅人 一、判断题:(共5题,每题2分)
设是标准布朗运动, ( T )
过程过程 ()
马氏链状态i与j即使互达,i ,j也可能有不同的周期。 ()
是Markov过程。 ()可以看成一个二元函数。 ( T )
6.设为相互独立宽平稳过程。是平稳过程。
解: 由于是相互独立是平稳过程,故
===常数。
=
得分 评阅人 五、论述题:(共1题,一题10分,)
14.依时间平均和依统计平均的概念关系相等的条件。思路如下:1.随机过程概念,一族随机变量
2.依时间平均和依统计平均的解释
3.平稳性和状态历经性
4.均值遍历定理
图略对状态0 来说,我们有 所以一般的我们有,故而 所以状态0 是正常返的,
又从而 0 是非周期的,因此 0 是遍历的。因为整个状态空间E 是连通的,所以,
对任意的状态,它都是遍历的。
13.计算,,
解:布朗运动有很多好性质比如
布朗运动是时齐的独立增量过程,也是时齐的马氏过程。
布朗运动具有平稳增量,且的分布就是n维的正态分布 N (0, (t-s) I ).
布朗运动是鞅 (需写出鞅性的表达式)
布朗运动的数字特征有 等。
布朗运动平移变换尺度变换后仍然是布朗运动等
布朗运动的几乎每条样本轨道是连续的但对几乎每条样本轨道上的任意一点,其导数几乎处处不存在。
等等
~
===
解上述方程组得平稳分布为 = = =
状态3的平均返回时间 ==667,即,认为使用一件产品认为是“一代”
平均使用第4.667代时,重新选用C。
11.分支过程中一个体产生后代的分布为初始为一个母体,试求第代个数的均值方差及全体消亡概率。
解:
=
,
, 解得消亡概率为
得分 评阅人 四、综合题:(共2题,每题12分)
12.设 是马氏链,其状态空间 ,转移概率为
试用转移图的方法考察状态的0 的常返性和遍历性,进而讨论整个状态空间的常返性和遍历性。
常返
得分 评阅人 三、计算题:(共3题,每题10分)
9.设( 的Poisson过程, 设火车站时刻离站,问在区间内乘客的总等待时间的期望。
解:由题意,则等待时间为
总等待时间为
由定理在 N(t)=n条件下n个的联合分布等价与[0,t]上n个相互独立服从均匀分布的随机变量
的联合分布。所以可计算
10.
P=
a) 证明该链是遍历马氏链(即该状态的平均返回时间)。
解:a) 因为马尔可夫链是不可约的非周期有限状态,所以遍历
b) 所以马尔可夫链平稳分布存在,由定理可得方程组
=
=, 与t无关。
== 因此是平稳过程。为Poisson过程,对,证明在时刻到达次的条件下时刻达到次数的概率,即服从二项分布。
证明:
。
8.试证连续时间马氏链的向微分方程,。
证明:由C-K方程有
称为向后方程。
---------------------------
显示全部