文档详情

111集合的含义与表示01.doc

发布:2017-06-04约字共3页下载文档
文本预览下载声明
1.1 集合 1.1.1 集合的含义与表示 导入新课 思路1. 军训前学校通知:8月15日8点,高一年级学生到操场集合进行军训.试问这个通知的对象是全体的高一学生还是个别学生? 在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合. 新知探究 提出问题 ①请我们班的全体女生起立!接下来问:“咱班的所有女生能不能构成一个集合啊?” ②下面请班上身高在1.75以上的男生起立!他们能不能构成一个集合啊? ③其实,生活中有很多东西能构成集合,比如新华字典里所有的汉字可以构成一个集合等等.那么,大家能不能再举出一些生活中的实际例子呢?请你给出集合的含义. ④如果用A表示高一(3)班全体学生组成的集合,用a表示高一(3)班的一位同学,b是高一(4)班的一位同学,那么a、b与集合A分别有什么关系?由此看见元素与集合之间有什么关系? ⑤世界上最高的山能不能构成一个集合? ⑥世界上的高山能不能构成一个集合? ⑦问题⑥说明集合中的元素具有什么性质? ⑧由实数1、2、3、1组成的集合有几个元素? ⑨问题⑧说明集合中的元素具有什么性质? ⑩由实数1、2、3组成的集合记为M,由实数3、1、2组成的集合记为N,这两个集合中的元素相同吗?这说明集合中的元素具有什么性质?由此类比实数相等,你发现集合有什么结论? 提出问题 阅读课本P3中:数学中一些常用的数集及其记法.快速写出常见数集的记号. 讨论结果: 常见数集的专用符号. N:非负整数集(或自然数集)(全体非负整数的集合); N*或N+:正整数集(非负整数集N内排除0的集合); Z:整数集(全体整数的集合); Q:有理数集(全体有理数的集合); R:实数集(全体实数的集合). 提出问题 ①前面所说的集合是如何表示的? ②阅读课本中的相关内容,并思考:除字母表示法和自然语言之外,还能用什么方法表示集合? ③集合共有几种表示法? 讨论结果: ①方法一(字母表示法):大写的英文字母表示集合,例如常见的数集N、Q,所有的正方形组成的集合记为A等等; 方法二(自然语言):用文字语言来描述出的集合,例如“所有的正方形”组成的集合等等. ②列举法:把集合中的全部元素一一列举出来,并用大括号“{}”括起来表示集合,这种表示集合的方法叫做列举法; 描述法:在大括号内先写上表示这个集合元素的一般符号及其取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.这种用集合所含元素的共同特征表示集合的方法叫做描述法.注:在不致混淆的情况下,也可以简写成列举法的形式,只是去掉竖线和元素代表符号,例如:所有直角三角形的集合可以表示为{x|x是直角三角形},也可以写成{直角三角形}. ③表示一个集合共有四种方法:字母表示法、自然语言、列举法、描述法. 应用示例 1.下列各组对象不能组成集合的是( ) A.大于6的所有整数 B.高中数学的所有难题 C.被3除余2的所有整数 D.函数y=图象上所有的点 变式训练 1.下列条件能形成集合的是( ) A.充分小的负数全体 B.爱好足球的人 C.中国的富翁 D.某公司的全体员工 2.2007浙江宁波高三第一次“十校联考”,理1 在数集{2x,x2-x}中,实数x的取值范围是___________. 点评:本题主要考查集合的含义和元素的性质.当所指的对象非常明确时就能构成集合,若元素不明确,没有判断的标准就不能构成集合. 2.用列举法表示下列集合: (1)小于10的所有自然数组成的集合; (2)方程x2=x的所有实数根组成的集合; (3)由1~20以内的所有质数组成的集合. 如果一个集合是有限集,并且元素的个数较少时,通常选择列举法表示,其特点是非常显明地表示出了集合中的元素,是常用的表示法; 列举法表示集合的步骤:(1)用字母表示集合;(2)明确集合中的元素;(3)把集合中所有元素写在大括号“{}”内,并写成A={……}的形式. 变式训练 用列举法表示下列集合: (1)所有绝对值等于8的数的集合A; (2)所有绝对值小于8的整数的集合B. 3.试分别用列举法和描述法表示下列集合: (1)方程x2-2=0的所有实数根组成的集合; (2)由大于10小于20的所有整数组成的集合. 描述法表示集合的步骤:(1)用字母分别表示集合和元素;(2)用数学符号表达集合元素的共同特征;(3)在大括号内先写上集合中元素的代表符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.并写成A={…
显示全部
相似文档