文档详情

2019届高考数学大一轮复习 第九章 平面解析几何 9.2 两条直线的位置关系学案 理 北师大版.doc

发布:2018-05-16约9.71千字共16页下载文档
文本预览下载声明
§9.2 两条直线的位置关系 最新考纲 考情考向分析 1.能根据两条直线的斜率判定这两条直线平行或垂直. 2.能用解方程组的方法求两条相交直线的交点坐标. 3.掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离. 以考查两条直线的位置关系、两点间的距离、点到直线的距离、两条直线的交点坐标为主,有时也会与圆、椭圆、双曲线、抛物线交汇考查.题型主要以选择、填空题为主,要求相对较低,但内容很重要,特别是距离公式,是高考考查的重点. 1.两条直线的位置关系 (1)两条直线平行与垂直 ①两条直线平行: (ⅰ)对于两条不重合的直线l1,l2,若其斜率分别为k1,k2,则有l1∥l2k1=k2. (ⅱ)当直线l1,l2不重合且斜率都不存在时,l1∥l2. ②两条直线垂直: (ⅰ)如果两条直线l1,l2的斜率存在,设为k1,k2,则有l1⊥l2k1·k2=-1. (ⅱ)当其中一条直线的斜率不存在,而另一条的斜率为0时,l1⊥l2. (2)两条直线的交点 直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,则l1与l2的交点坐标就是方程组的解. 2.几种距离 (1)两点P1(x1,y1),P2(x2,y2)之间的距离 |P1P2|=. (2)点P0(x0,y0)到直线l:Ax+By+C=0的距离 d=. (3)两条平行线Ax+By+C1=0与Ax+By+C2=0(其中C1≠C2)间的距离d= . 知识拓展 1.直线系方程 (1)与直线Ax+By+C=0平行的直线系方程是Ax+By+m=0(m∈R且m≠C). (2)与直线Ax+By+C=0垂直的直线系方程是Bx-Ay+n=0(n∈R). 2.两直线平行或重合的充要条件 直线l1:A1x+B1y+C1=0与直线l2:A2x+B2y+C2=0平行或重合的充要条件是A1B2-A2B1=0. 3.两直线垂直的充要条件 直线l1:A1x+B1y+C1=0与直线l2:A2x+B2y+C2=0垂直的充要条件是A1A2+B1B2=0. 4.过直线l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0的交点的直线系方程为A1x+B1y+C1+λ(A2x+B2y+C2)=0(λ∈R),但不包括l2. 5.点到直线、两平行线间的距离公式的使用条件 (1)求点到直线的距离时,应先化直线方程为一般式. (2)求两平行线之间的距离时,应先将方程化为一般式且x,y的系数对应相等. 题组一 思考辨析 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)当直线l1和l2斜率都存在时,一定有k1=k2l1∥l2.( × ) (2)如果两条直线l1与l2垂直,则它们的斜率之积一定为-1.( × ) (3)已知直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0(A1,B1,C1,A2,B2,C2为常数),若直线l1⊥l2,则A1A2+B1B2=0.( √ ) (4)点P(x0,y0)到直线y=kx+b的距离为.( × ) (5)直线外一点与直线上一点的距离的最小值就是点到直线的距离.( √ ) (6)若点A,B关于直线l:y=kx+b(k≠0)对称,则直线AB的斜率等于-,且线段AB的中点在直线l上.( √ ) 题组二 教材改编 2.已知点(a,2)(a0)到直线l:x-y+3=0的距离为1,则a等于(  ) A. B.2- C.-1 D.+1 答案 C 解析 由题意得=1. 解得a=-1+或a=-1-.∵a0,∴a=-1+. 3.已知P(-2,m),Q(m,4),且直线PQ垂直于直线x+y+1=0,则m= . 答案 1 解析 由题意知=1,所以m-4=-2-m, 所以m=1. 题组三 易错自纠 4.(2017·郑州调研)直线2x+(m+1)y+4=0与直线mx+3y-2=0平行,则m等于(  ) A.2 B.-3 C.2或-3 D.-2或-3 答案 C 解析 直线2x+(m+1)y+4=0与直线mx+3y-2=0平行,则有=≠,故m=2或-3.故选C. 5.直线2x+2y+1=0,x+y+2=0之间的距离是 . 答案  解析 先将2x+2y+1=0化为x+y+=0, 则两平行线间的距离为d==. 6.若直线(3a+2)x+(1-4a)y+8=0与(5a-2)x+(a+4)y-7=0垂直,则a= . 答案 0或1 解析 由两直线垂直的充要条件,得(3a+2)(5a-2)+(1-4a)(a+4)=0,解得a=0或a=1. 题型一 两条直线的位置关系 典例 (2018·青岛模拟)已知两条直线l1:ax-by+4=0和l2:(a-1)x+y+b=0,求满足下列条件的a,b的值. (1)l1⊥l2,且l1过点(-3,-1)
显示全部
相似文档