2019届高考数学大一轮复习 第八章 立体几何与空间向量 8.3 空间图形的基本关系与公理学案 理 北师大版.doc
文本预览下载声明
§8.3 空间图形的基本关系与公理
最新考纲 考情考向分析 1.理解空间直线、平面位置关系的定义.
2.了解可以作为推理依据的公理和定理.
3.能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题. 主要考查与点、线、面位置关系有关的命题真假判断和求解异面直线所成的角,题型主要以选择题和填空题的形式出现,解题要求有较强的空间想象能力和逻辑推理能力.
1.四个公理
公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.
公理2:过不在一条直线上的三点,有且只有一个平面.
公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.
公理4:平行于同一条直线的两条直线互相平行.
2.直线与直线的位置关系
(1)位置关系的分类
(2)异面直线所成的角
①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角(或直角)叫作异面直线a与b所成的角(或夹角).
②范围:.
3.直线与平面的位置关系有直线在平面内、直线与平面相交、直线与平面平行三种情况.
4.平面与平面的位置关系有平行、相交两种情况.
5.等角定理
空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.
知识拓展
1.唯一性定理
(1)过直线外一点有且只有一条直线与已知直线平行.
(2)过直线外一点有且只有一个平面与已知直线垂直.
(3)过平面外一点有且只有一个平面与已知平面平行.
(4)过平面外一点有且只有一条直线与已知平面垂直.
2.异面直线的判定定理
经过平面内一点的直线与平面内不经过该点的直线互为异面直线.
题组一 思考辨析
1.判断下列结论是否正确(请在括号中打“√”或“×”)
(1)如果两个不重合的平面α,β有一条公共直线a,就说平面α,β相交,并记作α∩β=a.( √ )
(2)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.( × )
(3)两个平面ABC与DBC相交于线段BC.( × )
(4)经过两条相交直线,有且只有一个平面.( √ )
(5)没有公共点的两条直线是异面直线.( × )
(6)若a,b是两条直线,α,β是两个平面,且a(α,b(β,则a,b是异面直线.( × )
题组二 教材改编
2.如图所示,在正方体ABCD—A1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF所成角的大小为( )
A.30° B.45°
C.60° D.90°
答案 C
解析 连接B1D1,D1C,则B1D1∥EF,故∠D1B1C即为所求的角.又B1D1=B1C=D1C,∴△B1D1C为等边三角形,∴∠D1B1C=60°.
3.如图,在三棱锥A—BCD中,E,F,G,H分别是棱AB,BC,CD,DA的中点,则
(1)当AC,BD满足条件________时,四边形EFGH为菱形;
(2)当AC,BD满足条件________时,四边形EFGH为正方形.
答案 (1)AC=BD (2)AC=BD且AC⊥BD
解析 (1)∵四边形EFGH为菱形,
∴EF=EH,故AC=BD.
(2)∵四边形EFGH为正方形,∴EF=EH且EF⊥EH,
∵EF綊AC,EH綊BD,∴AC=BD且AC⊥BD.
题组三 易错自纠
4.(2017·湖南省湘中名校联考)已知l,m,n为不同的直线,α,β,γ为不同的平面,则下列判断正确的是( )
A.若m∥α,n∥α,则m∥n
B.若m⊥α,n∥β,α⊥β,则m⊥n
C.若α∩β=l,m∥α,m∥β,则m∥l
D.若α∩β=m,α∩γ=n,l⊥m,l⊥n,则l⊥α
答案 C
解析 A中,m,n可能的位置关系为平行、相交、异面,故A错误;B中,m与n也有可能平行,B错误;C中,根据线面平行的性质可知C正确;D中,若m∥n,根据线面垂直的判定可知D错误,故选C.
5.(2017·湖北七市联考)设直线m与平面α相交但不垂直,则下列说法中正确的是( )
A.在平面α内有且只有一条直线与直线m垂直
B.过直线m有且只有一个平面与平面α垂直
C.与直线m垂直的直线不可能与平面α平行
D.与直线m平行的平面不可能与平面α垂直
答案 B
解析 对于A,在平面α内有且只有一条直线与直线m垂直,过交点与直线m垂直的直线只有一条,在平面内与此直线平行的直线都与m垂直,不正确;对于B,过直线m有且只有一个平面与平面α垂直,在直线m上取一点作平面α的垂线,两条直线确定一个平面与平面α垂直,正确;对于C,与直线m垂直的直线不可能与平面α平行,不正确;对于D,与直线m平行的平面不可能与平面α垂直,不正确.
6.如图为正方体表面的一种展开图,则图中的四条线段AB,CD,EF,GH在原正方体中互为异面的对数为______.
答案 3
解
显示全部