新课标高三数学-第一轮复习单元讲座第26讲 平面向量的数量积及应用.doc
文本预览下载声明
第 PAGE 1 页 共 NUMPAGES 13 页
普通高中课程标准实验教科书—数学 [人教版]
高三新数学第一轮复习教案(讲座26)—平面向量的数量积及应用
一.课标要求:
1.平面向量的数量积
①通过物理中功等实例,理解平面向量数量积的含义及其物理意义;
②体会平面向量的数量积与向量投影的关系;
③掌握数量积的坐标表达式,会进行平面向量数量积的运算;
④能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。
2.向量的应用
经历用向量方法解决某些简单的平面几何问题、力学问题与其他一些实际问题的过程,体会向量是一种处理几何问题、物理问题等的工具,发展运算能力和解决实际问题的能力。
二.命题走向
本讲以选择题、填空题考察本章的基本概念和性质,重点考察平面向量的数量积的概念及应用。重点体会向量为代数几何的结合体,此类题难度不大,分值5~9分。
平面向量的综合问题是“新热点”题型,其形式为与直线、圆锥曲线、三角函数等联系,解决角度、垂直、共线等问题,以解答题为主。
预测07年高考:
(1)一道选择题和填空题,重点考察平行、垂直关系的判定或夹角、长度问题;属于中档题目。
(2)一道解答题,可能以三角、数列、解析几何为载体,考察向量的运算和性质;
三.要点精讲
1.向量的数量积
(1)两个非零向量的夹角
已知非零向量a与a,作=,=,则∠AOA=θ(0≤θ≤π)叫与的夹角;
说明:(1)当θ=0时,与同向;
(2)当θ=π时,与反向;
(3)当θ=时,与垂直,记⊥;
(4)注意在两向量的夹角定义,两向量必须是同起点的,范围0?≤?≤180?。
C
C
(2)数量积的概念
已知两个非零向量与,它们的夹角为,则·=︱︱·︱︱cos叫做与的数量积(或内积)。规定;
向量的投影:︱︱cos=∈R,称为向量在方向上的投影。投影的绝对值称为射影;
(3)数量积的几何意义: ·等于的长度与在方向上的投影的乘积。
(4)向量数量积的性质
①向量的模与平方的关系:。
②乘法公式成立
;
;
③平面向量数量积的运算律
交换律成立:;
对实数的结合律成立:;
分配律成立:。
④向量的夹角:cos==。
当且仅当两个非零向量与同方向时,θ=00,当且仅当与反方向时θ=1800,同时与其它任何非零向量之间不谈夹角这一问题。
(5)两个向量的数量积的坐标运算
已知两个向量,则·=。
(6)垂直:如果与的夹角为900则称与垂直,记作⊥。
两个非零向量垂直的充要条件:⊥·=O,平面向量数量积的性质。
(7)平面内两点间的距离公式
设,则或。
如果表示向量的有向线段的起点和终点的坐标分别为、,那么(平面内两点间的距离公式)。
2.向量的应用
(1)向量在几何中的应用;
(2)向量在物理中的应用。
四.典例解析
题型1:数量积的概念
例1.判断下列各命题正确与否:
(1);
(2);
(3)若,则;
(4)若,则当且仅当时成立;
(5)对任意向量都成立;
(6)对任意向量,有。
解析:(1)错;(2)对;(3)错;(4)错;(5)错;(6)对。
点评:通过该题我们清楚了向量的数乘与数量积之间的区别于联系,重点清楚为零向量,而为零。
例2.(1)(2002上海春,13)若、、为任意向量,m∈R,则下列等式不一定成立的是( )
A. B.
C.m()=m+m D.
(2)(2000江西、山西、天津理,4)设、、是任意的非零平面向量,且相互不共线,则
①(·)-(·)= ②||-|||-| ③(·)-(·)不与垂直
④(3+2)(3-2)=9||2-4||2中,是真命题的有( )
A.①② B.②③ C.③④ D.②④
解析:(1)答案:D;因为,而;而方向与方向不一定同向。
(2)答案:D①平面向量的数量积不满足结合律。故①假;②由向量的减法运算可知||、||、|-|恰为一个三角形的三条边长,由“两边之差小于第三边”,故②真;③因为[(·)-(·)]·=(·)·-(·)·=0,所以垂直.故③假;④(3+2)(3-2)=9··-4·=9||2-4||2成立。故④真。
点评:本题考查平面向量的数量积及运算律,向量的数量积运算不满足结合律。
题型2:向量的夹角
例3.(1)(06全国1文,1)已知向量、满足、,且,则与的夹角为( )
A. B. C. D.
(2)(06北京文,12)已知向量=(cos,sin),=(cos,sin),且,那么与的夹角的大小是 。
(3)已知两单位向量与的夹角为,若,试求与的夹角。
(4)(2005北京3)| |=1,| |=2,= +
显示全部