同济大学《高等数学》(第四版)1-5节 无穷小与无穷大.ppt
文本预览下载声明
函数与极限 一、无穷小 二、无穷大 三、无穷小与无穷大的关系 四、小结 * 1.定义: 极限为零的变量称为无穷小. 例如, 注意 1.无穷小是变量,不能与很小的数混淆; 2.零是可以作为无穷小的唯一的数. 2.无穷小与函数极限的关系: 证 必要性 充分性 意义 1.将一般极限问题转化为特殊极限问题(无穷小); 3.无穷小的运算性质: 定理2 在同一过程中,有限个无穷小的代数和仍是无穷小. 证 注意 无穷多个无穷小的代数和未必是无穷小. 定理3 有界函数与无穷小的乘积是无穷小. 证 推论1 在同一过程中,有极限的变量与无穷小的乘积是无穷小. 推论2 常数与无穷小的乘积是无穷小. 推论3 有限个无穷小的乘积也是无穷小. 都是无穷小 绝对值无限增大的变量称为无穷大. 特殊情形:正无穷大,负无穷大. 注意 1.无穷大是变量,不能与很大的数混淆; 3. 无穷大是一种特殊的无界变量,但是无界变量未必是无穷大. 不是无穷大. 无界, 证 定理4 在同一过程中,无穷大的倒数为无穷小;恒不为零的无穷小的倒数为无穷大. 证 意义 关于无穷大的讨论,都可归结为关于无穷小的讨论. 1、主要内容: 两个定义;四个定理;三个推论. 2、几点注意: 无穷小与无穷大是相对于过程而言的. (1) 无穷小( 大)是变量,不能与很小(大)的数混淆,零是唯一的无穷小的数; (2)无穷多个无穷小的代数和(乘积)未必是无穷小. (3) 无界变量未必是无穷大. * *
显示全部