《概率论》期末考试试卷.docx
《概率论》期末考试试卷
一、选择题(每题3分,共30分)
1.设事件\(A\)与\(B\)互不相容,且\(P(A)=0.3\),\(P(B)=0.4\),则\(P(A\cupB)\)等于()
A.\(0.3\)B.\(0.4\)C.\(0.7\)D.\(0.12\)
答案:C
解析:因为事件\(A\)与\(B\)互不相容,即\(A\capB=\varnothing\),根据概率的加法公式\(P(A\cupB)=P(A)+P(B)\),已知\(P(A)=0.3\),\(P(B)=0.4\),所以\(P(A\cupB)=0.3+0.4=0.7\)。
2.设随机变量\(X\)服从参数为\(\lambda\)的泊松分布,且\(P(X=1)=P(X=2)\),则\(\lambda\)等于()
A.\(1\)B.\(2\)C.\(3\)D.\(4\)
答案:B
解析:已知随机变量\(X\)服从参数为\(\lambda\)的泊松分布,其概率分布为\(P(X=k)=\frac{\lambda^{k}e^{\lambda}}{k!}\),\(k=0,1,2,\cdots\)。因为\(P(X=1)=P(X=2)\),所以\(\frac{\lambda^{1}e^{\lambda}}{1!}=\frac{\lambda^{2}e^{\lambda}}{2!}\),即\(\lambda=\frac{\lambda^{2}}{2}\),由于\(\lambda0\),两边同时约去\(\lambda\)得\(\lambda=2\)。
3.设随机变量\(X\)的概率密度为\(f(x)=\begin{cases}2x,0x1\\0,其他\end{cases}\),则\(P(0.2X0.5)\)等于()
A.\(0.21\)B.\(0.25\)C.\(0.36\)D.\(0.49\)
答案:A
解析:根据概率密度函数求概率\(P(aXb)=\int_{a}^{b}f(x)dx\),已知\(f(x)=\begin{cases}2x,0x1\\0,其他\end{cases}\),则\(P(0.2X0.5)=\int_{0.2}^{0.5}2xdx=x^{2}\big|_{0.2}^{0.5}=0.5^{2}0.2^{2}=0.250.04=0.21\)。
4.设随机变量\(X\)和\(Y\)相互独立,且\(X\simN(1,2)\),\(Y\simN(2,3)\),则\(X+Y\)服从()
A.\(N(3,5)\)B.\(N(3,1)\)C.\(N(1,5)\)D.\(N(1,1)\)
答案:A
解析:若\(X\simN(\mu_1,\sigma_1^{2})\),\(Y\simN(\mu_2,\sigma_2^{2})\),且\(X\)与\(Y\)相互独立,则\(X+Y\simN(\mu_1+\mu_2,\sigma_1^{2}+\sigma_2^{2})\)。已知\(X\simN(1,2)\),\(Y\simN(2,3)\),所以\(X+Y\simN(1+2,2+3)=N(3,5)\)。
5.设\(X_1,X_2,\cdots,X_n\)是来自总体\(X\)的样本,\(E(X)=\mu\),\(D(X)=\sigma^{2}\),则样本均值\(\overline{X}=\frac{1}{n}\sum_{i=1}^{n}X_i\)的方差\(D(\overline{X})\)等于()
A.\(\sigma^{2}\)B.\(\frac{\sigma^{2}}{n}\)C.\(n\sigma^{2}\)D.\(\frac{\sigma^{2}}{n^{2}}\)
答案:B
解析:根据方差的性质,若\(X_1,X_2,\cdots,X_n\)相互独立,且\(D(X_i)=\sigma^{2}\),\(i=1,2,\cdots,n\),则\(D(\overline{X})=D(\frac{1}{n}\sum_{i=1}^{n}X_i)=\frac{1}{n^{2}}\sum_{i=1}^{n}D(X_i)=\frac{1}{n^{2}}\cdotn\sigma^{2}=\frac{\sigma^{2}}{n}\)。
6.设总体\(X\simN(\mu,\sigma^{2})\),\(\sigma^{2}\)已知,\(X_1,X_2,\cdots,X_n\)是来自总体\(X\)的样本,\(\overl