〖数〗多边形的内角和与外角和第1课时教案 2024—2025学年华东师大版数学七年级下册.docx
第八章三角形
8.2多边形的内角和与外角和
第1课时多边形的内角和
?一、教材分析
?
一、教材分析
《多边形的内角和》是华师版七年级下册第八章第二节第1课时内容.在此之前,学生已经学习了三角形的相关知识,包括三角形的内角和定理等.三角形作为最简单的多边形,是研究多边形的基石,学生在学习三角形过程中积累的观察、分析、归纳等经验,都为学习多边形内角和提供了重要基础.
多边形内角和是对三角形内角和知识的拓展与延伸.通过对多边形内角和的探究,能让学生进一步体会从特殊到一般的数学思想,感悟将复杂图形转化为简单图形来研究的化归思想.这不仅有助于学生深化对几何图形的认识,还为后续学习多边形的外角和、用正多边形铺设地面等知识做好铺垫,同时对今后学习平行四边形、梯形等特殊四边形以及圆的相关知识,在方法和思维上起到了重要的衔接作用.
?
?
二、学情分析
七年级学生对新鲜事物普遍充满好奇心,多边形在生活中的广泛应用,如蜂巢、地砖等形状,能够激发学生对多边形内角和知识的学习兴趣.这种生活实例的引入,让学生感受到数学与生活的紧密联系,认识到学习多边形内角和知识的实用性,从而提高他们主动学习的积极性.然而,数学知识的抽象性和逻辑性可能会使部分学生在学习过程中遇到困难,进而产生畏难情绪.尤其是在多边形内角和公式的推导过程中,若学生不能及时理解和掌握,可能会对后续的学习失去信心.
在学习态度方面,部分学生可能更倾向于被动接受知识,缺乏主动探索和质疑精神.在课堂上,可能习惯于跟随教师的节奏进行思考和回答问题,而对于一些开放性问题或需要自主探究的内容,缺乏主动尝试和深入思考的动力.教师需要通过多样化的教学方法和激励措施,引导学生转变学习态度,培养他们主动探索、积极思考的学习习惯.
?
?
三、教学目标
1.理解多边形的概念和正多边形的概念.
2.了解多边形的内角、外角、对角线等概念.
3.在三角形内角和定理基础上,利用分割法探究多边形内角和计算公式.
4.经历质疑、猜想、归纳等活动,发展学生的推理能力,积累数学活动的经验,在探索中学会与人合作,学会和别人交流自己的思想和方法.
?
?
四、教学重难点
重点:多边形及相关概念(内角、外角、对角线等)的理解.
难点:利用分割法将多边形问题转化为三角形问题推导内角和公式.
?
?
五、教学过程
情境导入
从下列生活图片中,能抽象出哪些图形呢?
师生活动:学生通过已学的知识进行思考,并举手发言.
答:三角形,长方形,四边形,六边形,八边形.
设计意图:引导学生从熟悉场景中抽象出图形,复习旧知,自然引入多边形主题,同时培养学生观察与抽象思维能力,为后续学习多边形概念及内角和知识做铺垫.
探究新知
活动一:多边形的相关概念
试一试:三角形有三个内角、三条边,我们也可以把三角形称为三边形(但我们习惯称为三角形).
你能说出三角形的定义吗?
答:由三条不在同一条直线上的线段首尾顺次连结组成的平面图形叫作三角形.
你能说出什么叫做四边形、五边形吗?
答:
由四条不在同一条直线上的线段首尾顺次连结组成的平面图形叫作四边形.
如图①,记为:四边形ABCD
由五条不在同一条直线上的线段首尾顺次连结组成的平面图形叫作五边形.
如图②,记为:五边形ABCDE
多边形的定义:
一般地,由n条不在同一条直线上的线段首尾顺次连结组成的平面图形称为n边形,也即我们通常所说的多边形.
n边形有n条边,n个顶点.
注意:
这也是四边形,但不在我们目前的研究范围内.
我们现在研究的多边形都是凸多边形.即画出多边形的任何一条边所在直线,整个多边形都在这条直线的同一侧.
设计意图:从三角形过渡到四边形、五边形等,逐步增加边数,让学生观察、总结共同特征,自主归纳多边形定义,培养抽象概括与逻辑思维能力.
与三角形类似,如图所示,
∠A、∠D、∠C、∠ABC是四边形ABCD的四个内角.
∠CBE和∠ABF都是与∠ABC相邻的外角,两者互为对顶角.
四边形一共有4个内角,8个外角.
思考:五边形、六边形分别有多少个内角?多少个外角?n边形呢?
答:
五边形一共有5个内角,10个外角.
六边形一共有6个内角,12个外角.
...
n边形一共有n个内角,2n个外角.
设计意图:在于通过具体图形,引导学生认识多边形的内角和外角概念.
一般地,如果多边形的各边都相等,各内角也都相等,那么就称它为正多边形.
连结多边形不相邻的两个顶点的线段叫做多边形的对角线.
思考:从多边形的一个顶点出发,一共可以画几条对角线?
观察上面几个图形,完成下面的表格.
答:对角线:
表格:
追问:还可以画出哪些对角线?
答:
四边形有2条对角线,五边形有5条对角线,六边形有9条对角线.
n边形有n(n?3)2条对角线
归纳:
组成多边形的各条线段:边.
相邻两条边的