2025年贵州省毕节地区大方县高三下学期3月联考数学试卷.docx
2025年贵州省毕节地区大方县高三下学期3月联考数学试卷
题号
一
二
三
总分
得分
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I卷(选择题)
请点击修改第I卷的文字说明
评卷人
得分
一、选择题(共2题,总计0分)
1.(1996山东理13)设双曲线的半焦距为c,直线l过两点,已知原点到直线l的距离为,则双曲线的离心率为 ()
A.2B.C.D.
2.设两个正态分布和的密度函数图像如图所示。则有()
A.
B.
C.
D.
评卷人
得分
二、填空题(共17题,总计0分)
3.设为锐角,若,则的值为▲.
4.动点在不等式组表示的平面区域内部及其边界上运动,则的取值范围是.
5.分数段
人数
3
5
7
19
13
8
4
1
AUTONUM.某班学生60人,在一次数学考试中成绩分布如下表:
那么分数不满100的频率是.
6.某信号兵用红、黄、蓝3面旗从上到下挂在竖直的旗杆上表示信号,每次可以任挂1面、2面或3面,并且不同的顺序表示不同的信号,一共可以表示___________种不同的信号.
15
7.有一长为100m的斜坡的坡度为,现要把坡度改为,坡高不变,则坡底要伸长_______m
8.设函数的最大值为,则对于一切,的最大值为.
9.从单词“equation”中选取5个不同的字母排成一排,含有“eq”(其中“eq”相邻且顺序不变)的不同的排法共有.
10.命题“若a,b都是偶数,则a+b是偶数”的逆否命题是:.
11.正四面体的表面积为,其中四个面的中心分别是、、、.设四面体的表面积为,则等于().
(A)(B)(C)(D)
12.设是以2为周期的奇函数,且,若,则的值为▲.
13.在△ABC中,已知A、B、C成等差数列,则的值为_________.
14.若x>0,y>0,且则的最小值为____
15.过原点O作圆x2+y2-6x-8y+20=0的两条切线,设切点分别为P、Q,则线段PQ的长
为.
16.设,若函数在区间上是增函数,则的取值范围是▲.
17.设变量满足约束条件,其中,若的最大值为1,则实数的取值范围
18.在中,、、分别是角、、所对的边,,,若有两解,则的取值范围是▲.
19.若直线与曲线相切于点,则▲.
评卷人
得分
三、解答题(共11题,总计0分)
20.(本小题满分16分)
设,两个函数,的图像关于直线对称.
(1)求实数满足的关系式;
(2)当取何值时,函数有且只有一个零点;
(3)当时,在上解不等式.
21.(本题满分16分)设椭圆的左,右两个焦点分别为,短轴的上端点为,短轴上的两个三等分点为,且为正方形。
(1)求椭圆的离心率;
(2)若过点作此正方形的外接圆的切线在轴上的一个截距为,求此椭圆方程。
22.如图,在正三棱柱中,,是的中点,是的中点。
求证:
(1)平面;
(2)平面;(本题满分14分)
23.先阅读:如图,设梯形ABCD的上、下底边的长分别是a,b(a<b),高为h,求梯形的面积.
D
D
A
C
B
A
A
B
C
D
A′
B′
C′
D′
24.已知函数.
(1)若,求的值;
(2)若对于任意实数恒成立,求实数的取值范围.
25.已知p:方程x2+mx+1=0有两个不等的负实根;q:方程4x2+4(m-2)x+1=0无实根,若p或q为真,p且q为假,求m的取值范围.
26.已知向量,,,,,为正实数.
(1)若,求的值;
(2)若,求的值;
(3)当时,若,求的最小值.
27.数列的前项为(),若对任意正整数,有(其中为常数,且),则称数列是以为周期,以为周期公比的似周期性等比数列.已知似周期性等比数列的前5项为1,1,1,1,2,周期为5,周期公比为3,则数列前项的和等于_________.(为正整数)
28.已知是轴正方向的单位向量,设=,=,且满足.
(1) 求点的轨迹方程;
(2) 过点的直线交上述轨迹于两点,且,求直线的方程.
29.已知函数、
(1)讨论函数的奇偶性(只写结论,不要求证明);
(2)在构成函数的映射中,若输出值和分别对应输入值和2,求、的值;
(3)在(2)的条