2024-2025学年下学期初中数学人教版七年级期中必刷常考题之平移.docx
第PAGE19页(共NUMPAGES19页)
2024-2025学年下学期初中数学人教版(2024)七年级期中必刷常考题之平移
一.选择题(共5小题)
1.(2022?陵水县二模)如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()
A.48 B.96 C.84 D.42
2.(2023春?高港区月考)下列图形中,不能通过其中一个四边形平移得到的是()
A. B.
C. D.
3.(2017?玉田县一模)如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那小明沿着小路的中间,从出口A到出口B所走的路线(图中虚线)长为()
A.100米 B.99米 C.98米 D.74米
4.(2019?香坊区模拟)如图图形中,把△ABC平移后能得到△DEF的是()
A. B.
C. D.
5.(2022春?抚顺县期末)如图,在10×6的网格中,每个小正方形的边长都是1个单位,将三角形ABC平移到三角形DEF的位置,下面正确的平移步骤是()
A.先向左平移5个单位,再向下平移2个单位
B.先向右平移5个单位,再向下平移2个单位
C.先向左平移5个单位,再向上平移2个单位
D.先向右平移5个单位,再向上平移2个单位
二.填空题(共5小题)
6.(2024春?太平区期末)如图所示,某住宅小区内有一长方形地块,想在长方形地块内修筑同样宽的两条”之”字路,余下部分绿化,道路的宽为2米,则绿化的面积为m2.
7.(2015?新疆)如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为.
8.(2020?镇江)如图,在△ABC中,BC=3,将△ABC平移5个单位长度得到△A1B1C1,点P、Q分别是AB、A1C1的中点,PQ的最小值等于.
9.(2016?广州)如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm.将线段DC沿着CB的方向平移7cm得到线段EF,点E,F分别落在边AB,BC上,则△EBF的周长为cm.
10.(2021?通州区模拟)如图,∠1=70°,直线a平移后得到直线b,则∠2﹣∠3=°.
三.解答题(共5小题)
11.(2020春?叶集区期末)如图,直线CB∥OA,∠C=∠A=112°,E,F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.
(1)求∠EOB的度数;
(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值;
(3)在平行移动AB的过程中,是否存在某种情况使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.
12.(2022春?路北区期末)如图,已知AB∥CD,点E在直线AB,CD之间.
(1)求证:∠AEC=∠BAE+∠ECD;
(2)若AH平分∠BAE,将线段CE沿CD平移至FG.
①如图2,若∠AEC=90°,HF平分∠DFG,求∠AHF的度数;
②如图3,若HF平分∠CFG,试判断∠AHF与∠AEC的数量关系并说明理由.
13.(2022春?天水期末)如图,某居民小区有一长方形地,居民想在长方形地内修筑同样宽的两条小路,余下部分绿化,道路的宽为2米,则绿化的面积为多少平方米?
14.(2017秋?灵石县期末)如图,已知直线AB∥CD,∠A=∠C=100°,E,F在CD上,且满足∠DBF=∠ABD,BE平分∠CBF.
(1)求证:AD∥BC;
(2)求∠DBE的度数;
(3)若平行移动AD,在平行移动AD的过程中,是否存在某种情况,使∠BEC=∠ADB?若存在,求出其度数;若不存在,请说明理由.
15.(2016春?周口期末)如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm,将△ABC沿AB方向向右平移得到△DEF,若AE=8cm,DB=2cm.
(1)求△ABC向右平移的距离AD的长;
(2)求四边形AEFC的周长.
2024-2025学年下学期初中数学人教版(2024)七年级期中必刷常考题之平移
参考答案与试题解析
题号
1
2
3
4
5
答案
A
D
C
A
A
一.选择题(共5小题)
1.(2022?陵水县二模)如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()
A.48 B.96 C.84 D.42
【考点】平移的