专题2.2 以解析几何中离心率、最值、范围为背景解答题-2018年高考数学备考优生百日闯关系列(江苏专版)(原卷版).doc
文本预览下载声明
专题二 压轴解答题
第二关 以解析几何中离心率、最值、范围为背景解答题
【名师综述】解析几何中的范围、最值和离心率问题仍是高考考试的重点与难点,试题难度较大.注意分类讨论思想、函数与方程思想、化归与转化思想等的应用,如解析几何中的最值问题往往需建立求解目标函数,通过函数的最值研究几何中的最值.
类型一 离心率问题
典例1 如图,在平面直角坐标系中,椭圆: 的右焦点为,点是椭圆的左顶点,过原点的直线与椭圆交于, 两点(在第三象限),与椭圆的右准线交于点.已知,且.
(1)求椭圆的离心率;
(2)若,求椭圆的标准方程.
【举一反三】已知椭圆的左、右焦点分别为,过且与轴垂直的直线交椭圆于两点,直线与椭圆的另一个交点为,若,则椭圆的离心率为________.
类型二 最值、范围问题
典例2 已知椭圆的离心率为,圆与轴交于点, 为椭圆上的动点, , 面积最大值为.
(1)求圆与椭圆的方程;
(2)圆的切线交椭圆于点,求的取值范围.
【举一反三】已知椭圆的离心率,左、右焦点分别为,且与抛物线的焦点重合.[来源:学|科|网]
(1)求椭圆的标准方程;
(2)若过的直线交椭圆于两点,过的直线交椭圆于两点,且,求的最小值.
类型三 面积问题
典例3 平面直角坐标系中,圆的圆心为.已知点,且为圆上的动点,线段的中垂线交于点.
(Ⅰ)求点的轨迹方程;
(Ⅱ)设点的轨迹为曲线,抛物线: 的焦点为., 是过点互相垂直的两条直线,直线与曲线交于, 两点,直线与曲线交于, 两点,求四边形面积的取值范围.
【举一反三】已知是椭圆的左、右焦点,点在椭圆上,且离心率为
(1)求椭圆的方程;
(2)若的角平分线所在的直线与椭圆的另一个交点为为椭圆上的一点,当面积最大时,求点的坐标.
【精选名校模拟】
1.如图,一张坐标纸上一已作出圆及点,折叠此纸片,使与圆周上某点重合,每次折叠都会留下折痕,设折痕与直线的交点为,令点的轨迹为.
(1)求轨迹的方程;
(2)若直线与轨迹交于两个不同的点,且直线与以为直径的圆相切,若,求的面积的取值范围.
2. 设椭圆的左、右焦点分别为,,上顶点为,过与垂直的直线交轴负半轴于点,且.
(Ⅰ)求椭圆的离心率;
(Ⅱ)若过、、三点的圆恰好与直线相切,求椭圆的方程;
(Ⅲ)过的直线与(Ⅱ)中椭圆交于不同的两点、,则的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.
3. 已知椭圆 的左、右焦点分别为,离心率为,点在椭圆上,且的面积的最大值为.[来源:学。科。网]
(1)求椭圆的方程;
(2)已知直线与椭圆交于不同的两点,若在轴上存在点,使得,求点的横坐标的取值范围.
4. 已知椭圆C:的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线与以椭圆C的右焦点为圆心,以椭圆的长半轴长为半径的圆相切.[来源:学§科§网]
(1)求椭圆的方程.[来源:Z.xx.k.Com]
(2)设为椭圆上一点,若过点的直线与椭圆相交于不同的两点和,且满足(O为坐标原点),求实数的取值范围
5. 已知椭圆的离心率为,点在椭圆上.
(Ⅰ)求椭圆的方程;
(Ⅱ)过椭圆内一点的直线的斜率为,且与椭圆交于两点,设直线, (为坐标原点)的斜率分别为,若对任意,存在实数,使得,求实数的取值范围.
6. 已知点,椭圆:的离心率为,是椭圆的焦点,直线的斜率为,为坐标原点.
(1)求的方程;
(2)设过点的直线与相交于两点,当的面积最大时,求的方程.
7. 如图,椭圆的左焦点为,过点的直线交椭圆于两点.的最大值是,的最小值是,满足.
(1) 求该椭圆的离心率;
(2) 设线段的中点为,的垂直平分线与轴和轴分别交于两点,是坐标原点.记的面积为,的面积为,求的取值范围.
8. 在平面直角坐标系xOy中,点P是圆上一动点,x轴于点D.记满足的动点M的轨迹为Γ.[来源:Zxxk.Com]
(1)求轨迹Γ的方程;
(2)已知直线与轨迹Γ交于不同两点A,B,点G是线段AB中点,射线OG交轨迹Γ于点Q,且.
①证明:
②求△AOB的面积S(λ)的解析式,并计算S(λ)的最大值.
显示全部