多边形的内角和优质课教学设计一等奖及点评.doc
文本预览下载声明
11.3.2 多边形的内角和
内容和内容解析
1.内容
多边形内角和公式,多边形外角和等于360°.
2.内容解析
多边形的内角和公式反应了多边形的边数与内角和之间的关系,是三角形内角和定理的应用、推广和深化,它源于三角形内角和定理又包含三角形内角和定理.多边形内角和公式为多边形外角和公式的学习提供知识基础.
多边形以三角形为基础,多边形的内角和与外角和都可以与三角形类比,多边形的对角线能把多边形分成几个三角形.因此,多边形的问题通常可以转化为三角形的问题来解决.
多边形内角和公式的探索过程体现了从特殊到一般的研究问题方法,涉及将多边形分割成若干个三角形的化归思想.
基于以上分析,确定本节课的教学重点:多边形内角和公式的探究及其应用.
目标和目标解析
1.目标
探究并证明多边形内角和公式,体会化归思想和从特殊到一般的研究问题的方法.
运用多边形内角和公式解决问题,培养学生的应用意识.
2.目标解析
达成目标(1)的标志是:学生能够以三角形内角和知识为基础,通过类比已有学习经验,将多边形分割成三角形探究多边形的内角和公式;通过多种转化方法的探究,让学生深刻体验化归及分类的思想,从特殊到一般的认识问题的方法,发展学生合情推理能力.
达成目标(2)的标志是:学生能在多边形的问题情境中,自觉地联想用多边形的内角和公式解决问题(如解决多边形外角和的问题).
教学问题诊断分析
由具体的多边形内角和到n(n是不小于3的任意整数)边形内角和公式的获得,是一个由具体到抽象的推理过程.如何获得将多边形分割成三角形来解决问题的思路,如何确定分割后三角形的个数,这个过程不但结论随着多边形边数的变化而变化,而且还要关注从一个顶点出发的对角线数、分割的三角形数、内角和等,学生把握这一过程有一定难度.因此,教学中需要引导学生注意不同分割方法得到的三角形的个数和多边形内角和的关系.
因此,确定本节课的教学难点:学生获得将多边形分割成三角形解决问题的思路,确定分割后的三角形个数.
教学过程设计
1.课前准备
提前布置作业:探究四边形内角和是360°.
师生活动:通过学生的作业,老师可以了解他们探究四边形内角和是360°的方法,从学生已有的经验出发,为课堂上探究多边形内角和的方法指导做准备.
设计意图:学生在小学四年级上册人教版教材的练习题中探究过四边形的内角和,通过布置作业,让学生再现四边形内角和的探究方法,给学生充裕的时间去思考,可以看看学生通过最简单的多边形——三角形的学习还有没有别的探究方法,老师将学生的作业分类比较,为课堂上引导学生探究多边形的内角和做准备,从学生已有的学习经验出发,符合学生的认知规律.
2.设计情景,引出新课
从新疆魅力——特克斯八卦城引入多边形,带领学生复习三角形内角和定理和多边形相关概念,从特殊四边形内角和到任意四边形,发现四边形内角和是个定值,进一步探究其他多边形的内角和,引出新课.
师生活动:共同观看新疆特克斯八卦城的视频介绍.
问题1:你能从八卦城的鸟瞰图中找到哪些平面几何图形?
问题2:上一节课我们学习了哪些有关多边形的概念?
问题3:以四边形为例,当四边形的形状发生变化时,它的每条边的长度和每个内角的度数都有可能发生变化但是四边形的内角和不变,那么其它的多边形的内角和会是什么情况呢?
设计意图:1.通过介绍新疆特克斯八卦城,培养学生爱国爱疆意识,加深学生对中华文化的了解.
2.从特殊的四边形到任意的四边形,感知边的长度和每个内角的变化,但是内角和始终不变,明确探究多边形内角和的意义.
3.分析作业
师生活动:将学生探究四边形内角和的作业按不同方法进行分类分析,分析过程由学生合作交流并讲解,老师要及时纠正学生数学语言表达的准确性.
设计意图:让学生感受四边形内角和的不同探究方法,从学生熟悉的、已知的例子出发,建立四边形和三角形之间的关系,让学生体会化未知为已知的解决问题的方法.
4.探索五边形的内角和
问题1:在探究四边形内角和的作业中,同学发现了将四边形分割成两个三角形的方法(如图1),求得四边形内角和是360°,大家能用这样的方法继续探究五边形的内角和是多少吗?(如图2)
????????????????
问题2:你是如何添加辅助线的?分割成了几个三角形?
问题3:你还有别的方法探究五边形内角和吗?(如图3)
追问:当多边形的边数增加1时,多边形的内角和度数会怎样变化?
师生活动1:老师引导学生发现将多边形转化为三角形的思路,学生独立思考,探究五边形的内角和,引导学生说出分割方法是从多边形的一个顶点出发引对角线分割三角形,确定分割三角形的个数.
师生活动2:在学生独立探索的过程中发现学生的不同方法,及时补充,进一步让学生体会转化思想的重要意义.
设计意图:将研究方法进行迁移,类比学生在四边形内角和中出现
显示全部