第五章模拟调制系统报告.ppt
文本预览下载声明
* 第5章 模拟调制系统 抗噪声性能 WBFM抗噪声性能最好, DSB、SSB、VSB抗噪声 性能次之,AM抗噪声性 能最差。 右图画出了各种模拟调制 系统的性能曲线,图中的圆 点表示门限点。 门限点以下,曲线迅速下跌;门限点以上,DSB、SSB的信噪比比AM高4.7dB以上,而FM(mf = 6)的信噪比比AM高22dB。 当输入信噪比较高时,FM的调频指数mf越大,抗噪声性能越好。 * 频带利用率 SSB的带宽最窄,其频带利用率最高;FM占用的带宽随调频指数mf的增大而增大,其频带利用率最低。可以说,FM是以牺牲有效性来换取可靠性的。因此, mf值的选择要从通信质量和带宽限制两方面考虑。对于高质量通信(高保真音乐广播,电视伴音、双向式固定或移动通信、卫星通信和蜂窝电话系统)采用WBFM, mf值选大些。对于一般通信,要考虑接收微弱信号,带宽窄些,噪声影响小,常选用mf 较小的调频方式。 * 特点与应用 AM:优点是接收设备简单;缺点是功率利用率低,抗干扰能力差。主要用在中波和短波调幅广播。 DSB调制:优点是功率利用率高,带宽与AM相同,但设备较复杂。应用较少,一般用于点对点专用通信。 SSB调制:优点是功率利用率和频带利用率都较高,抗干扰能力和抗选择性衰落能力均优于AM,而带宽只有AM的一半;缺点是发送和接收设备都复杂。SSB常用于频分多路复用系统中。 VSB调制:抗噪声性能和频带利用率与SSB相当。在电视广播、数传等系统中得到了广泛应用。 FM: FM的抗干扰能力强,广泛应用于长距离高质量的通信系统中。缺点是频带利用率低,存在门限效应。 * 5.6.1 频分复用(FDM) 目的:充分利用信道的频带资源,提高信道利用率 原理 * 典型例子 典型例子:多路载波电话系统 每路电话信号的频带限制在300—3400Hz,在各路已调信号间留有防护频带,每路电话信号取4 kHz作为标准带宽。 层次结构:12路电话复用为一个基群;5个基群复用为一个超群,共60路电话;由10个超群复用为一个主群,共600路电话。如果需要传输更多路电话,可以将多个主群进行复用,组成巨群。 基群频谱结构图 载波频率 * 结论 FDM 技术主要用于模拟信号,普遍应用在多路载波电话系统中。其主要优点是信道利用率高,技术成熟;缺点是设备复杂,滤波器难以制作,并且在复用和传输过程中,调制、解调等过程会不同程度地引入非线性失真,而产生各路信号的相互干扰。 * 作业 8,10,13 16,18 * End Of The Chapter 5 * * FM与PM之间的关系 由于频率和相位之间存在微分与积分的关系,所以FM与PM之间是可以相互转换的。 比较下面两式可见 如果将调制信号先微分,而后进行调频,则得到的是调相波,这种方式叫间接调相;同样,如果将调制信号先积分,而后进行调相,则得到的是调频波,这种方式叫间接调频。 * 方框图 (a)直接调频 (b)间接调频 (c) 直接调相 (d) 间接调相 * 5.3.2 窄带调频(NBFM) 定义:如果FM信号的最大瞬时相位偏移满足下式条件 则称为窄带调频;反之,称为宽带调频。 时域表示式 将FM信号一般表示式展开得到 当满足窄带调频条件时: 故上式可简化为 * NBFM频域表示式 利用以下傅里叶变换对 可得NBFM信号的频域表达式 (设m(t)的均值为0) * NBFM和AM信号频谱的比较 两者都含有一个载波和位于±ωc处的两个边带,所以它们的带宽相同 不同的是,NBFM的两个边频分别乘了因式[1/(? - ?c)]和[1/(? + ?c)] ,由于因式是频率的函数,所以这种加权是频率加权,加权的结果引起调制信号频谱的失真。 另外,NBFM的一个边带和AM反相。 * NBFM和AM信号频谱的比较举例 以单音调制为例。设调制信号 则NBFM信号为 AM信号为 按照上两式画出的频谱图和矢量图如下: * 频谱图 单音调制频谱图 * 矢量图 单音调制矢量图 (a) AM (b) NBFM 在AM中,两个边频的合成矢量与载波同相,所以只有幅度的变化,无相位的变化;而在NBFM中,由于下边频为负,两个边频的合成矢量与载波则是正交相加,所以NBFM不仅有相位的变化,幅度也有很小的变化。 这正是两者的本质区别 。 由于NBFM信号最大频率偏移较小,占据的带宽较窄,但是其抗干扰性能比AM系统要好得多,因此得到较广泛的应用。 * 5.3.3 宽带调频 信号表达式 设:单音调制信
显示全部