一类分数阶微分方程解的性质探讨.pdf
文本预览下载声明
Pure Mathematics 理论数学, 2016, 6(1), 56-64
Published Online January 2016 in Hans. /journal/pm
/10.12677/pm.2016.61009
Exploration on the Nature of Solutions for a
Differential Equation of Fractional Order
1 2
Shiyou Lin , Jie Ren
1
School of Mathematics and Statistics, Hainan Normal University, Haikou Hainan
2
Li’an Junior High School, Lingshui Hainan
th th th
Received: Dec. 30 , 2015; accepted: Jan. 24 , 2016; published: Jan. 29 , 2016
Copyright © 2016 by authors and Hans Publishers Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
/licenses/by/4.0/
Abstract
We prove existence and uniqueness of the solution of a nonlinear differential equation of fraction-
al order. The differential operator is the Caputo fractional derivative. For the solvability of the
equation is equivalent to a class of Volterra integral equation, we study the existence and unique-
ness of the integral equation. We prove the existence of the solution of integral equation by Schau-
der fixed point theorem and the uniqueness of the solution by contraction mapping principle.
Keywords
Differential Equation of Fractional Order, Caputo Derivative, Schauder Fixed Point Theorem,
Contraction Mapping Principle
一类分数阶微分方程解的性质探讨
1 2
林诗游 ,任 洁
1海南师范大学数学与统计学院,海南 海口
2黎安初级中学,海南 陵水
收稿日期:2015年12月30 日;录用日期:2016年1月24 日;发布日期:2016年1月29 日
文章引用: 林诗游, 任洁. 一类分数阶微分方程解的性质探讨[J]. 理论数学, 2016, 6(1): 56-64.
/10.12677/pm.2016.61009
林诗游,任洁
摘 要
本文主要证明了一类分数阶非线性微分方程解的存在性和唯一性。文中用到的微分算子是Caputo分数阶
微分算子。因这
显示全部