文档详情

平面空间两条直线.doc

发布:2017-03-25约7.21千字共13页下载文档
文本预览下载声明
高三数学(9.1 平面、空间两条直线)复习讲义 【知识点归纳】 1.平面的概念: 平面是没有厚薄的,可以无限延伸,这是平面最基本的属性 2.平面的画法及其表示方法: ①常用平行四边形表示平面通常把平行四边形的锐角画成,横边画成邻边的两倍画两个平面相交时,当一个平面的一部分被另一个平面遮住时,应把被遮住的部分画成虚线或不画 ②一般用一个希腊字母、、……来表示,还可用平行四边形的对角顶点的字母来表示如平面等 3.空间图形是由点、线、面组成的 点、线、面的基本位置关系如下表所示: 图形 符号语言 文字语言(读法) 点在直线上 点不在直线上 点在平面内 点不在平面内 直线、交于点 直线在平面内 直线与平面无公共点 直线与平面交于点 平面、相交于直线 (平面外的直线)表示或 4平面的基本性质 公理1 如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内 推理模式:. 如图示: 应用:是判定直线是否在平面内的依据,也可用于验证一个面是否是平面. 1说明了平面与曲面的本质区别.通过直线的“直”来刻划平面的“平”,通过直线的“无限延伸”来描述平面的“无限延展性”,它既是判断直线在平面内,又是检验平面的方法. 公理2如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线 推理模式:且且唯一如图示: 应用:①确定两相交平面的交线位置;②判定点在直线上 公理2揭示了两个平面相交的主要特征,是判定两平面相交的依据,提供了确定两个平面交线的方法. 公理3 经过不在同一条直线上的三点,有且只有一个平面 推理模式:不共线存在唯一的平面,使得 应用:①确定平面;②证明两个平面重合 “有且只有一个”的含义分两部分理解,“有”说明图形存在,但不唯一,“只有一个”说明图形如果有顶多只有一个,但不保证符合条件的图形存在,“有且只有一个”既保证了图形的存在性,又保证了图形的唯一性.在数学语言的叙述中,“确定一个”,“可以作且只能作一个”与“有且只有一个”是同义词,因此,在证明有关这类语句的命题时,要从“存在性”和“唯一性”两方面来论证. 推论1 经过一条直线和直线外的一点有且只有一个平面 推理模式:存在唯一的平面,使得, 推论2 经过两条相交直线有且只有一个平面 推理模式:存在唯一的平面,使得 推论3 经过两条平行直线有且只有一个平面 推理模式:存在唯一的平面,使得 5平面图形与空间图形的概念:如果一个图形的所有点都在同一个平面内,则称这个图形为平面图形,否则称为空间图形 6 空间两直线的位置关系 (1)相交——有且只有一个公共点; (2)平行——在同一平面内,没有公共点; (3)异面——不在任何一个平面内,没有公共点; 7公理4 :平行于同一条直线的两条直线互相平行 推理模式:. 8等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等 9等角定理的推论:如果两条相交直线和另两条相交直线分别平行,那么这两条直线所成的锐角(或直角)相等 10空间两条异面直线的画法 11.异面直线定理:连结平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线 推理模式:与是异面直线 12.异面直线所成的角:已知两条异面直线,经过空间任一点作直线,所成的角的大小与点的选择无关,把所成的锐角(或直角)叫异面直线所成的角(或夹角).为了简便,点通常取在异面直线的一条上 异面直线所成的角:(1)范围:;(2)求法:计算异面直线所成角的关键是平移(中点平移,顶点平移以及补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,以便易于发现两条异面直线间的关系)转化为相交两直线的夹角。 13.异面直线垂直:如果两条异面直线所成的角是直角,则叫两条异面直线垂直.两条异面直线 垂直,记作. 14.求异面直线所成的角的方法: 几何法:(1)通过平移,在一条直线上找一点,过该点做另一直线的平行线;(2)找出与一条直线平行且与另一条相交的直线,那么这两条相交直线所成的角即为所求 向量法:用向量的夹角公式 15两条异面直线的公垂线、距离 和两条异面直线都垂直相交的直线,我们称之为异面直线的公垂线 理解:因为两条异面直线互相垂直时,它们不一定相交,所以公垂线的定义要注意“相交”的含义. 两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线. 有且只有一条 【基础训练】 (1)在空间四点中,三点共线是四点共面的_____条件; (2)给出命题:①若A∈l,A∈α,B∈l ,B∈α,则 l α; ②若A∈α,A∈β,B∈α,B∈β,则α∩β=AB;③若lα ,A∈l,则Aα ④若A、B、C∈α
显示全部
相似文档