梅江中学八年级数学上册 15.1 整式的乘法教案1 新人教版.doc
文本预览下载声明
15.1.1 同底数幂的乘法 教学目标 理解同底数幂的乘法法则,运用同底数幂的乘法法则解决一些实际问题.通过“同底数幂的乘法法则”的推导和应用,使学生初步理解特殊到般再到特殊的认知规律 教学重点 正确理解同底数幂的乘法法则以及适用范围 课时分配 1课时 班 级 教学过程 设计意图 回顾幂的相关知识
an的意义:
an表示n个a相乘,我们把这种运算叫做乘方.乘方的结果叫幂;a叫做底数,n是指数.
创设情境,感觉新知
1.问题:一种电子计算机每秒可进行1012次运算,它工作103 1012×103=×(10×10×10)==1015.通过观察可以发现1012、103这两个因数是同底数幂的形式,所以我们把像1012×103的运算叫做同底数幂的乘法.根据实际需要,我们有必要研究和学习这样的运算(1)25×22(2)a3·a2 3)5m·5n(m、n
2.引导学生:注意观察计算前后底数和指数的关系,并能用自己的语言描述.
3.得到结论:(1)特点:这三个式子都是底数相同的幂相乘.
相乘结果的底数与原来底数相同,指数是原来两个幂的指数的和.
(2)一般性结论:
am·an表示同底数幂的乘法.根据幂的意义可得:
am·an=·==am+n
am·an=am+n(m、n都是正整数),)x2·x5 (2)a·a6 ()xm·x3m+12×24×23 (2) am·an·ap(-a)2a6 【1】
练习:(-a)2a4 (-)6
2.当底数为一个多项式的时候,我们可以把这个多项式看成一个整体
例:计算 (a+b)2×(a+b)4×[-(a+b)]7()×(m-n)4×(n-m)7 a2×a×a5+a3×a2×a2
小结:
同底数幂的乘法的运算性质,
进一步体会了幂的意义.
了解了同底数幂乘法的运算性质.
同底数幂的乘法的运算性质是底数不变,指数相加.
注意两点:一是必须是同底数幂的乘法才能运用这个性质;
二是运用这个性质计算时一定是底数不变,指数相加,
即am·an=am+n(m、n是正整数).
作业 板书设计 §15.1.1 同底数幂的乘法
一.同底数幂的乘法法则:
同底数幂相乘,底数不变,指数相加.即am·an=am+n(m
教学反思 预习要点
▁▂▃▄▅▆▇█▉▊▋▌精诚凝聚 =^_^= 成就梦想 ▁▂▃▄▅▆▇█▉▊▋▌
▁▂▃▄▅▆▇█▉▊▋▌精诚凝聚 =^_^= 成就梦想 ▁▂▃▄▅▆▇█▉▊▋▌
▃ ▄ ▅ ▆ ▇ █ █ ■ ▓点亮心灯 ~~~///(^v^)\\\~~~ 照亮人生 ▃ ▄ ▅ ▆ ▇ █ █ ■ ▓
▃ ▄ ▅ ▆ ▇ █ █ ■ ▓点亮心灯 ~~~///(^v^)\\\~~~ 照亮人生 ▃ ▄ ▅ ▆ ▇ █ █ ■ ▓
▁▂▃▄▅▆▇█▉▊▋▌精诚凝聚 =^_^= 成就梦想 ▁▂▃▄▅▆▇█▉▊▋▌
▃ ▄ ▅ ▆ ▇ █ █ ■ ▓点亮心灯 ~~~///(^v^)\\\~~~ 照亮人生 ▃ ▄ ▅ ▆ ▇ █ █ ■ ▓
显示全部