文档详情

【成才之路】2014-2015学年高中数学 2.2.3 第2课时两条直线垂直的条件基础巩固试题 新人教B版必修2.doc

发布:2017-08-31约2.64千字共5页下载文档
文本预览下载声明
【成才之路】2014-2015学年高中数学 2.2.3 第2课时两条直线垂直的条件基础巩固试题 新人教B版必修2 一、选择题 1.点P(1,2)关于坐标原点的对称点为P′,则P′点的坐标为(  ) A.(1,-2)       B.(-1,2) C.(-1,-2) D.(2,2) [答案] C [解析] 设P′(x′,y′),由题意,得 , . 2.直线x+y=0和直线x-ay=0垂直,则a的值为(  ) A.0 B.1 C.-1 D.2 [答案] B [解析] 由题意,得1-a=0,a=1. 3.(2014·湖南师大附中高一期末测试)过点P(-1,3)且垂直于直线x-2y+3=0的直线方程为(  ) A.2x+y-5=0 B.2x+y-1=0 C.x+2y-5=0 D.x-2y+7=0 [答案] B [解析] 所求直线的斜率为-2,故所求直线方程为y-3=-2(x+1), 即2x+y-1=0. 4.与直线3x+4y+5=0关于x轴对称的直线的方程为(  ) A.3x-4y+5=0 B.3x+4y-5=0 C.4x+3y-5=0 D.4x+3y+5=0 [答案] A [解析] 平面内任一点P(x,y)关于x轴的对称点为P′(x,-y),故与直线3x+4y+5=0关于x轴对称的直线方程为3x-4y+5=0. 5.以A(-2,1)、B(4,3)为端点的线段的垂直平分线的方程是(  ) A.3x-y+5=0 B.3x-y-5=0 C.3x+y-5=0 D.3x+y+5=0 [答案] C [解析] kAB=,AB中点坐标为(1,2), 故所求直线方程为3x+y-5=0. 6.已知A(2,4)与B(3,3)关于直线l对称,则直线l的方程为(  ) A.x+y=0 B.x-y=0 C.x+y-6=0 D.x-y+1=0 [答案] D [解析] l过AB中点且与直线AB垂直, 直线l的斜率k=-=1,故选D. 二、填空题 7.直线l:4x-3y+12=0与两坐标轴相交于A、B两点,则线段AB的垂直平分线的方程为__________. [答案] 6x+8y-7=0 [解析] 直线l:4x-3y+12=0与两坐标轴的交点A(-3,0)、B(0,4), kAB=,线段AB的中点坐标为, 线段AB的垂直平分线的方程为 y-2=- 即6x+8y-7=0. 8.和直线3x+4y-7=0垂直,并且在x轴上的截距是-2的直线方程是________________. [答案] 4x-3y+8=0 [解析] 所求直线的斜率为,且过点(-2,0),故所求直线方程为y=(x+2),即4x-3y+8=0. 三、解答题 9.(2014·陕西汉中市南郑中学高一期末测试)已知三角形三顶点A(4,0)、B(8,10)、C(0,6),求: (1)AC边上的高所在的直线方程; (2)过A点且平行于BC的直线方程. [解析] (1)kAC==-, AC边上的高所在的直线的斜率k=, 其方程为y-10=(x-8), 即2x-3y+14=0. (2)kBC==, 过A点且平行于BC的直线方程为y=(x-4), 即x-2y-4=0.一、选择题 1.已知直线3ax-y=1与直线x+y+1=0互相垂直,则a的值是(  ) A.-1或 B.1或 C.-或-1 D.-或1 [答案] D [解析] 由题意,得3a-1=0, 解得a=-或1. 2.(2014·辽宁大连第二中学高一期末测试)若直线l1:y+1=k(x+1)和直线l2关于直线y=x+1对称,那么直线l2恒过定点(  ) A.(2,0) B.(1,-1) C.(1,1) D.(-2,0) [答案] D [解析] l1过定点(-1,-1),点(-1,-1)关于直线y=x+1的对称点为(-2,0),故l2过定点(-2,0). 二、填空题 3.已知直线ax+2y-1=0与直线2x-5y+C=0垂直相交于点(1,m),则a=________,C=________,m=________. [答案] 5 -12 -2 [解析] 直线ax+2y-1=0与直线2x-5y+C=0垂直,-·=-1,a=5. 又点(1,m)在直线5x+2y-1=0上, m=-2.又点(1,-2)在直线2x-5y+C=0上, C=-12. 4.若直线l经过点M(a-2,-1)和N(-a-2,1)且与经过点(-2,1),斜率为-的直线垂直,则实数a的值为________. [答案] - [解析] kMN==-, 由题意得-×(-)=-1, a=-. 三、解答题 5.四边形ABCD的顶点为A(-7,0)、B(2,-3)、C(5,6)、D(-4,9).求证:四边形ABCD为正方形. [解析] 由kAD===3, kBC===3.AD∥BC. 又kAB==-, kCD==-,AB∥C
显示全部
相似文档