2018年中考数学基础过关复习 第三章 函数 第3课时 反比例函数课件 新人教版.ppt
文本预览下载声明
(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由. 2 核心考点解读 考 点 1 y≠0 1.当m=__ 时,关于x的函数 y=(m-1)xm2-2是反比例函数? 分析: { m2-2=-1 m-1≠0 { 即 m=±1 m≠1 -1 反比例函数的图象与性质 考 点 2 一 三 二 四 减小 增大 考点3 反比例函数中k的代数意义和几何意义 P(m,n) A o y x 与面积有关的问题: P(m,n) A o y x B P(m,n) A o y x P/ 考 点 4 反比例函数的实际应用 1.应用反比例函数解决实际问题时,关键是将实际问题转化为数学问题,建立反比例函数模型,首先要分清变量、常量、函数、自变量,其次建立函数与自变量的关系.在应用时,还要注意 的取值范围. 2.反比例函数应用中常见的基本关系有: (1)行程类问题;(2)工程类问题; (3)等积类问题;(4)图形类问题. 考 点 5 自变量 怎么考 减小 焦 点 1 [解析]根据反比例函数的性质,依据比例系数k的符号即可确定. ∵k=2>0, ∴在每一支上y随x的增大而减小. D D A 焦 点 2 [解析]本题主要考查了反比例函数中系数k的几何意义,解决问题的关键是运用数形结合的思想方法.先设点B坐标为(a,b),根据平行线分线段成比例定理,求得梯形BDCE的上、下底边长与高,再根据四边形BDCE的面积求得a·b的值,即可得到k的值.也根据已知易得CE是△BOD的中位线,由S四边形BDCE=2可得S△BOD,从而求出k值. B [易错提醒]在运用k的几何意义确定k值时,一定要结合函数图象确定k的取值范围,否则易出现符号错误. (1)求这个反比例函数的解析式; (2)若B(x1,y1),C(x2,y2),D(x3,y3)是这个反比例函数图象上的三个点,若x1>x2>0>x3,请比较y1,y2,y3的大小,并说明理由. 7.如图,等边三角形ABC放置在平面直角坐标系中,已知A(0,0)、B(6,0),反比例函数的图象经过点C. (1)求点C的坐标及反比例函数的解析式; (2)将等边△ABC向上平移n个单位,使点B恰好落在双曲线上,求n的值. 焦点4 反比例函数的应用 样题4 某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体实验.测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x小时之间的函数关系如图所示(当4≤x≤10时,y与x成反比例). (1)根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系式; (2)问血液中药物浓度不低于4微克/毫升的持续时间为多少小时? (1)根据上述数学模型计算: ①喝酒后几时血液中的酒精含量达到最大值?最大值为多少? ②当x=5时,y=45,求k的值; 1 2 3 4 5 6 * 第3课时 反比例函数 中考考什么 D C -2<x<0 1 2 3 4 5 6 *
显示全部