文档详情

几种数学问题的解法..doc

发布:2017-01-06约3.63千字共10页下载文档
文本预览下载声明
几种数学问题的解法 一道思考题的三种解法    题目是这样的:选择+、-、×、÷中的运算符号,把下面各题连成算式,使它们的得数分别等于0、1、2、3、4、5、6、7、8、9。   (1) 2 2 2 2 2=0   (2) 2 2 2 2 2=1   (3) 2 2 2 2 2=2   (4) 2 2 2 2 2=3   (5) 2 2 2 2 2=4   (6) 2 2 2 2 2=5   (7) 2 2 2 2 2=6   (8) 2 2 2 2 2=7   (9) 2 2 2 2 2=8   (10)2 2 2 2 2=9   下面向你介绍三种解这道题的方法,希望你能受到启发,从而举一反三,学会解更多的思考题。   猜测法,也叫试验法。它完全是靠边猜测、边试验的方式求解。如(1)题,先试2×2÷2+2-2≠0,后试2÷2+2-2+2≠0……最后试得2÷2+2÷2-2=0,成功了。猜到了一种答案,还可以继续下去,以寻找第二、第三种答案。   逆推法,就是从问题的要求或结果出发,一步一步地进行逆向推理,逐步靠拢已知条件,把已知条件逐个用进去,直至求出问题的答案。如(2)题,因为等号右边的1比等号左边的2小,所以只能在等号左边第一个2前面添上减号或者除号。如添上减号,使原题变成2 2 2 2=3。同理又因3>2,故可在等号左边第二个2的前面添上加号,使原题变成2 2 2=1。这时就很容易看出2-2÷2=1了。综合前两步逆推,就得到2-2÷2+2-2=1的一种解法。如继续作其它逆推,还可得到第二、第三……种解法。   前面介绍的两种方法你看懂了吗?请不要着急,慢慢地消化理解,逐步加以接受。   下面请看第三种解法。   凑数法,这是一种综合运用知识的方法,它同样要结合试验才能顺利进行。如(3)题,可以让等式左边的5个2两两相减得0,剩下的一个2当然就和等式右边的2相等了,即2-2+2-2+2=2。   从某种意义上说,它和猜测法有相同的地方,那就是都要试验,但试验的方法是不同的,你能总结出它们的不同点吗?   怎么样?这三种解法和你以前用过的方法一样吗?你还有更好的方法吗?如果有,那真是太好了,因为你现在的思路宽了,解题的速度和正确率都会大大提高的。   好吧,看看你学习的效果怎样,是不是真正能举一反三。请做下面的题。   选择适当的运算符号和括号,使下式成立。   (1)2 3 5 7 1=2 (2)2 3 5 7 1=4   (3)2 3 5 7 1=6 (4)2 3 5 7 1=8 ? 鸡兔同笼问题一种不同凡响的解法 英国数学教育家贝克浩斯(Backhousl)在研究“问题解决”时首先提到的是中国古算题,其中包括鸡兔同笼问题、100个和尚买100个馒头问题等。解这些问题需要想象,解者在其情景中有明确的且力所能及的目的,但缺少现成的方法达到此目的,因此常常作为夜航船中或纳凉赏月时的一种试智比知式考问的备办学问,一代一代传下来,还传到世界各地,鸡兔问题传到日本叫龟鹤问题。明代作家张岱曾说:“天下学问,惟夜航船中最难对付”。又到纳凉的季节,老公公们要用这些问题来试试儿孙辈的学问怎样?有位小朋友听了老公公提出的问题,觉得难度不大,便满怀信心地对老公公说:慢点,让我打开灯,拿纸和笔。老公公讲不用笔就不可以算吗?这一下,许多小朋友都被难住了。显然老公公解这些难题的技巧肯定不同凡响,那么老公公是怎样解这些问题的呢?我们先举个例子说说。 一、鸡兔同笼问题 例1 笼中有若干只鸡和兔,它们共有50个头和140只脚,问鸡兔各有多少只? 解法1 假设法   假设一个未知数是已知的,比如假定50个头全是兔,则共有脚(4×50=)200(只),这与题中已知140只不符,多出(200-140=)60(只),多的原因是鸡当兔后每只鸡多算了2只脚,所以鸡的只数是(60÷2=)30(只),则兔的只数为(50-30=)20(只)。   这种解法,思路清晰,但较复杂,不便操作。能不能形象地画个图呢?让我们试试。 解法2 图形法  从图中看ACDF的面积=4×50=200(只脚),  比实际多出  GHEF的面积=200-140=60(只脚),  AB=GH=60÷2=30(只鸡),  BC=AC-AB=50-30=20(只兔) 解法2比解法1高级,算理是一样的。这里答案是图上算出的,显然这两种解法都要用纸和笔。不用纸和笔肯定是用口诀或易记的公式,这是老公公的传家宝。 解法3 公式法   老公公讲:只要用哨子一吹,并喊一声口令:“全体肃立”。这时每只鸡呈金鸡独立之状,每只兔呈玉兔拜月状,着地的脚数之和有(140÷2=)70(只),其中鸡的头数与脚数相等,由于每只兔的脚比头数多1,因此兔的头数为(70-50=)20(个),即兔有20只,则鸡有(50
显示全部
相似文档