《正方形的性质》教学设计.doc
文本预览下载声明
《正方形的性质》教学设计
课题 正方形的性质 课型 新授 案序 第1课时 教学目标 知识技能 1.掌握正方形的概念、性质并会用它们进行有关的论证和计算.
2.理解正方形与平行四边形、矩形、菱形的联系和区别通过观察、猜想、验证、推理、交流等数学活动进一步发展学生的演绎推理能力和发散思维能力通过正方形与平行四边形、矩形、菱形的联系的教学对学生进行辩证唯物主义教育,提高学生的逻辑思维能力.正方形的定义及正方形与平行四边形、矩形、菱形的联系.正方形与矩形、菱形的关系及正方形性质灵活运用.第一步:课堂引入
1.做一做:用一张长方形的纸片(如图所示)折出一个正方形.
学生在动手中对正方形产生感性认识,并感知正方形与矩形的关系.问题:什么样的四边形是正方形?
其定义包括了两层意:
有一组邻边相等的平行四边形 (菱形)
有一个角是直角的平行四边形 (矩形)
【问题】正方形有什么性质?
由正方形的定义可以得知,正方形既是有一组邻边相等的矩形,又是有一个角是直角的菱形.
所以,正方形具有矩形的性质,同时又具有菱形的性质.从学生的生活实际出发,创设情境,提出问题,激发学生强烈的好奇心和求知欲学生经历了将实际问题抽象为数学问题的建模过程通过学生感受到形与紧密联系;同时,把思维兴奋点集中到要研究的形上来,为下面学习新知识创造了良好开端例1 求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形.
已知:如图,学生在中获得丰富的感知渗透类比思想不但完成了学习任务,而且还学会了真正体现了新课程理念中“以人为本,促进学生终身发展” 的教学理念引导学生总结归纳,由此达到数学教学的新境界——提升思维品质,形成数学素养、随堂练习
____ __,四个角___ ____,两条对角线____ ____.
已知:如图,四边形ABCD为正方形,E、F分别
为CD、CB延长线上的点,且DE=BF.
求证:∠AFE=∠AEF.
3、.如图,E为正方形ABCD内一点,且△EBC是等边三角形,求∠EAD与∠ECD
4.已知:如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且DE=BF.
求证:EA⊥AF.
5.已知:如图,∠DAE交CD于F,求证:AE=BE+DF.
体现了教学的连贯性,也体现出数学知识的实用性学以致用的体验,使学生感受到数学学习是有趣的、丰富的、有价值的 ⑴ 对边平行 边
⑵ 四边相等
⑶ 四个角都是直角 角
正方形 ⑷ 对角线相等
互相垂直 对角线
互相平分
平分一组对角
课后反思,能够促进理解,提高认识水平,从而促进数学观点的形成和发展,更好地进行知识建构,实现良性循环突出内容本质,渗透思想、方法培养学生自我反馈、自主发展的意识
A
B
C
D
E
F
显示全部