【数学】2011版《3年高考2年模拟》第6章数列第一节等差数列等比数列的概念及求和.doc
文本预览下载声明
第六章 数列
第一节 等差数列、等比数列的概念及求和
第一部分 三年高考体题荟萃
2010年高考题
一、选择题
1.(2010浙江理)(3)设为等比数列的前项和,,则
(A)11 (B)5 (C) (D),设公比为,将该式转化为,解得=-2,带入所求式可知答案选D,本题主要考察了本题主要考察了等比数列的通项公式与前n项和公式,属中档题
2.(2010全国卷2理)(4).如果等差数列中,,那么
(A)14 (B)21 (C)28 (D)35
【答案】C
【命题意图】本试题主要考查等差数列的基本公式和性质.
【解析】
3.(2010辽宁文)(3)设为等比数列的前项和,已知,,则公比
(A)3 (B)4 (C)5 (D)6
【答案】 B
解析:选B. 两式相减得, ,.
4.(2010辽宁理)(6)设{an}是有正数组成的等比数列,为其前n项和。已知a2a4=1, ,则
(A) (B) (C) (D)
【答案】B
【命题立意】本题考查了等比数列的通项公式与前n项和公式,考查了同学们解决问题的能力。
【解析】由a2a4=1可得,因此,又因为,联力两式有,所以q=,所以,故选B。
5.(2010全国卷2文)(6)如果等差数列中,++=12,那么++???…+=
(A)14 (B) 21 (C) 28 (D) 35
【答案】C
【解析】本题考查了数列的基础知识。
∵ ,∴
6.(2010安徽文)(5)设数列的前n项和,则的值为
(A) 15 (B) 16 (C) 49 (D)64
A
【解析】即可得出结论.
7.(2010浙江文)(5)设为等比数列的前n项和,则
(A)-11 (B)-8
(C)5 (D)11
解析:通过,设公比为,将该式转化为,解得=-2,带入所求式可知答案选A,本题主要考察了本题主要考察了等比数列的通项公式与前n项和公式
8.(2010重庆理)(1)在等比数列中, ,则公比q的值为
A. 2 B. 3 C. 4 D. 8
【答案】A
解析:
9.(2010广东理)4. 已知为等比数列,Sn是它的前n项和。若, 且与2的等差中项为,则=
A.35 B.33 C.31 D.29
【答案】C
解析:设{}的公比为,即。由与2的等差中项为,.,即..中,,则的值为
(A)5 (B)6
(C)8 (D)10
【答案】 A
解析:由角标性质得,所以=5
二、填空题
1.(2010辽宁文)(14)设为等差数列的前项和,若,则 。
解析:填15. ,解得,
2.(2010福建理)11.在等比数列中,若公比,且前3项之和等于21,则该数列的通项公式 .
【答案】
【解析】由题意知,解得,所以通项。
【命题意图】本题考查等比数列的通项公式与前n项和公式的应用,属基础题。
3.(2010江苏卷)8、函数y=x2(x0)的图像在点(ak,ak2)处的切线与x轴交点的横坐标为ak+1,k为正整数,a1=16,则a1+a3+a5=_________
解析:考查函数的切线方程、数列的通项。
在点(ak,ak2)处的切线方程为:当时,解得,
所以。
三、解答题
1.(2010上海文)21.(本题满分14分)本题共有2个小题,第一个小题满分6分,第2个小题满分8分。
已知数列的前项和为,且,
(1)证明:是等比数列;
(2)求数列的通项公式,并求出使得成立的最小正整数.
解析:(1) 当n(1时,a1((14;当n≥2时,an(Sn(Sn(1((5an(5an(1(1,所以,又a1(1((15≠0,所以数列{an(1}是等比数列;(2) 由(1)知:,得,从而(n(N*);由Sn(1Sn,得,,最小正整数n(15.
2.(2010陕西文)16.(本小题满分12分)
已知{an}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.
(Ⅰ)求数列{an}的通项; (Ⅱ)求数列{2an}的前n项和Sn.
解 (Ⅰ)由题设知公差d≠0,
由a1=1,a1,a3,a9成等比数列得=,
解得d=1,d=0(舍去), 故{an}的通项an=1+(n-1)×1
显示全部