文档详情

精品解析:天津市第一中学2024-2025学年高一上学期第二次考试数学试卷(原卷版).docx

发布:2025-04-01约小于1千字共4页下载文档
文本预览下载声明

天津一中2024-2025-1高一年级第二次数学考试试卷

一、选择题:本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.

1.设函数定义域,函数定义域为,则()

A. B. C. D.

2.若,则“”是“”的()

A.充分不必要条件 B.必要不充分条件

C.充要条件 D.既不充分也不必要条件

3.已知函数,则的零点所在的区间是()

A. B.

C. D.

4.已知,且,则最小值为()

A.2 B.4 C.6 D.8

5.已知,则()

A. B. C. D.

6.下列四个函数中,当时,使得恒成立的函数有()个.

①②③④

A.1 B.2 C.3 D.4

7.已知函数的部分图象如下图所示,则可能的解析式是()

A. B.

C. D.

8.已知正实数a,b,c满足,则a,b,c的大小关系为()

A. B.

C. D.

二、填空题:本大题共4小题,每小题5分,共20分.

9.已知幂函数在上单调递增,则a的值为______.

10.已知,,则值为______.

11.已知,函数在R上没有零点,则实数的取值范围______.

12.已知,是方程的两个根,则的值为______.

三、解答题:本大题共4小题,共48分.解答应写出文字说明,证明过程或演算步骤.

13.已知函数为奇函数.

(1)求实数a的值;

(2)求不等式的解集.

14已知函数

(1)若关于x的方程有2个不同的实根,求实数a的取值范围;

(2)若关于x的方程有4个不同的实根,求实数a的取值范围.

15.已知函数.

(1)当时,求该函数的值域;

(2)若对于恒成立,求实数m的取值范围;

(3)若在上存在最小值,求实数λ取值范围.

16.若函数对定义域内的每一个值,在其定义域内都存在唯一的,使成立,则称该函数为“依赖函数”.

(1)判函数是否为“依赖函数”,并说明理由;

(2)若函数在定义域上为“依赖函数”,求mn的取值范围;

(3)已知函数在定义域上为“依赖函数”,若存在实数:,使得对任意的,不等式都成立,求实数s的最大值.

显示全部
相似文档