《线性代数》章节6-1.ppt
文本预览下载声明
第六章 二次型 Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. §1 二次型的矩阵表示 Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. 一、n元二次型 1、定义:设P为数域, 称为数域P上的一个n元二次型. ① n个文字 的二次齐次多项式 Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. 注意 2) 式① 也可写成 1) 为了计算和讨论的方便,式①中 的系数 写成 Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. 1) 约定①中aij=aji,ij ,由 xixj=xjxi,有 ② 2、二次型的矩阵表示 Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. 则矩阵A称为二次型 的矩阵. Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. 于是有 Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. 注意: 2)二次型与它的矩阵相互唯一确定,即 正因为如此,讨论二次型时矩阵是一个有力的工具. 若 且 ,则 1)二次型的矩阵总是对称矩阵,即 (这表明在选定文字 下,二次型 完全由对称矩阵A决定.) Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. 例1 1)实数域R上的2元二次型 3)复数域C上的4元二次型 它们的矩阵分别是: 2) 实数域R上的3元二次型 Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd.
显示全部