第四章节矩阵的特征值总19.ppt
文本预览下载声明
1.相似矩阵及其性质
(其中 k 是正整数)
(3)若A~B ,
(1)传递性:若A~B,B~C,则A~C
是关于A 的多项式,
(4)相似矩阵有相同的特征多项式和相同的特征值.
(5) 相似矩阵有相同的秩.
(6)相似矩阵的行列式相等.
(7)相似矩阵或都可逆,或都不可逆;
当它们可逆时,它们的逆也相似.
复习
Evaluation only.
Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0.
Copyright 2004-2011 Aspose Pty Ltd.
2. n阶矩阵与对角矩阵相似的条件
(2) 如果n 阶矩阵A 的n 个特征根互不相同,则A 与对角矩阵相似.
3. 化n阶矩阵为对角矩阵的步骤
Evaluation only.
Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0.
Copyright 2004-2011 Aspose Pty Ltd.
向量的内积
正交向量组
正交矩阵
第三节 实对称矩阵的特征值
和特征向量(一)
Evaluation only.
Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0.
Copyright 2004-2011 Aspose Pty Ltd.
一、向量的内积及其性质
定义4.5
Evaluation only.
Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0.
Copyright 2004-2011 Aspose Pty Ltd.
注意
(1)按矩阵乘法有:
(2)内积就是几何向量的数量积之推广。
Evaluation only.
Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0.
Copyright 2004-2011 Aspose Pty Ltd.
内积具有下列运算性质:
(线性性)
(对称性)
(正定性)
Evaluation only.
Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0.
Copyright 2004-2011 Aspose Pty Ltd.
定义4.6
(或模,或范数)
二、向量的长度(范数)
Evaluation only.
Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0.
Copyright 2004-2011 Aspose Pty Ltd.
例如 4维向量
的长度为:
为单位向量
而向量
Evaluation only.
Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0.
Copyright 2004-2011 Aspose Pty Ltd.
向量的长度有下述性质:
(1)非负性:
(3)三角不等式:
(2)齐次性:
(4)柯西-布涅柯夫斯基不等式:
式中的等号仅当向量
线性相关时才成立.
Evaluation only.
Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0.
Copyright 2004-2011 Aspose Pty Ltd.
三、正交向量组
定义4.7
例1.零向量与任意向量正交.
Evaluation only.
Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0.
Copyright 2004-2011 Aspose Pty Ltd.
Evaluation only.
Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0.
Copyright 2004-2011 Aspose Pty Ltd.
定义4.8
Evaluation only.
Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0.
Copyright 2004-2011 Aspose Pty Ltd.
证明
中 的正交向量组必线性无关
定理4.9
Evaluation only.
Created with Aspose.Slides
显示全部