文档详情

第四章节矩阵的特征值总19.ppt

发布:2017-04-06约4.6千字共31页下载文档
文本预览下载声明
1.相似矩阵及其性质 (其中 k 是正整数) (3)若A~B , (1)传递性:若A~B,B~C,则A~C 是关于A 的多项式, (4)相似矩阵有相同的特征多项式和相同的特征值. (5) 相似矩阵有相同的秩. (6)相似矩阵的行列式相等. (7)相似矩阵或都可逆,或都不可逆; 当它们可逆时,它们的逆也相似. 复习 Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. 2. n阶矩阵与对角矩阵相似的条件 (2) 如果n 阶矩阵A 的n 个特征根互不相同,则A 与对角矩阵相似. 3. 化n阶矩阵为对角矩阵的步骤 Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. 向量的内积 正交向量组 正交矩阵 第三节 实对称矩阵的特征值 和特征向量(一) Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. 一、向量的内积及其性质 定义4.5 Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. 注意 (1)按矩阵乘法有: (2)内积就是几何向量的数量积之推广。 Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. 内积具有下列运算性质: (线性性) (对称性) (正定性) Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. 定义4.6 (或模,或范数) 二、向量的长度(范数) Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. 例如 4维向量 的长度为: 为单位向量 而向量 Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. 向量的长度有下述性质: (1)非负性: (3)三角不等式: (2)齐次性: (4)柯西-布涅柯夫斯基不等式: 式中的等号仅当向量 线性相关时才成立. Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. 三、正交向量组 定义4.7 例1.零向量与任意向量正交. Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. 定义4.8 Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. 证明 中 的正交向量组必线性无关 定理4.9 Evaluation only. Created with Aspose.Slides
显示全部
相似文档